
Real-Time Workshop®

 For Use with Real-Time Workshop

Embedded Coder

User’s Guide
Version 3

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Real-Time Workshop Embedded Coder User’s Guide
© COPYRIGHT 2002-2004 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: July 2002 Online only Version 3.0 (Release 13)
December 2003 Online only Version 3.2 (Release 13SP1)
April 2004 Online only Version 3.2.1 (Release 13SP1+)
October 2004 Online only Version 3.2.1 (Release 13SP2)

i

Contents

Preface

Prerequisites . viii

Related Products . ix

Installing the Real-Time Workshop Embedded Coder xi

Typographical Conventions . xii

1
Product Overview

Introduction . 1-2

Real-Time Workshop Embedded Coder Demos
and Examples . 1-4

Demos . 1-4
ECRobot Target Example . 1-5

2
Data Structures and Program Execution

Data Structures and Code Modules . 2-2
Real-Time Model Data Structure . 2-2
Code Modules . 2-4
Generating the Main Program . 2-7

Program Execution . 2-9

ii Contents

Stand-Alone Program Execution . 2-10
Main Program . 2-11
rt_OneStep . 2-12

VxWorks Example Main Program Execution 2-18
Overview . 2-18
Task Management . 2-18

Model Entry Points . 2-20

The Static Main Program Module . 2-23

3
Code Generation Options and Optimizations

Controlling and Optimizing the Generated Code 3-2
Basic Code Generation Options . 3-3
Virtualized Output Ports Optimization 3-6
Generating Code from Subsystems . 3-7
Generating Block Comments . 3-7
Controlling Stack Space Allocation . 3-8

Generating a Code Generation Report 3-10

Automatic S-Function Wrapper Generation 3-12
Generating an S-Function Wrapper . 3-12
Limitations . 3-14

Other Code Generation Options . 3-15
Create Simulink (S-Function) Block . 3-17
Generate ASAP2 File . 3-17
Initialize Floats and Doubles to 0.0 . 3-17
Ignore Custom Storage Classes . 3-17
External Mode . 3-18
Suppress Error Status in Real-Time Model
Data Structure . 3-18
Parameter Structure . 3-19

iii

Generate An Example Main Program 3-19
Reusable Code Generation Options . 3-19
Target Floating Point Math Environment 3-21

4
Advanced Code Generation Features

Introduction . 4-2

ERT Code Deployment Aids . 4-4

Specifying Target-Specific Information
for Code Generation . 4-6

Setting Up STF_rtw_info_hook.m . 4-7

Customizing the Target Build Process via the
STF_make_rtw Hook File . 4-10

Auto-Configuring Models for Code Generation 4-15
The uset_param and uget_param Utilities 4-15
Automatic Model Configuration Using
ert_make_rtw_hook . 4-17
Using the Auto-Configuration Utilities 4-19

Generating Efficient Code via Optimized ERT Targets . . 4-20
Using the Optimized ERT Targets . 4-21

Generating Custom Code File Banners 4-24

Custom File Processing Templates . 4-28
Template Structure . 4-29
Generating Source and Header Files with a
CFP Template . 4-31
Code Template API Summary . 4-37

iv Contents

5
Custom Storage Classes

Introduction to Custom Storage Classes 5-2

Properties of Predefined Custom Storage Classes 5-4

Class-Specific Storage Class Attributes 5-8

Other Custom Storage Classes . 5-10
GetSet Custom Storage Class
for Data Store Memory . 5-10
Designing Custom Storage Classes . 5-10

Assigning a Custom Storage Class to Data 5-11

Code Generation with Custom Storage Classes 5-17
Ordering of Generated Storage Declarations 5-18

Sample Code Excerpts . 5-19

6
Requirements, Restrictions, Target Files

Requirements and Restrictions . 6-2
Unsupported Blocks . 6-2

System Target File and Template Makefiles 6-4

A
Generating ASAP2 Files

Overview . A-2

v

Targets Supporting ASAP2 . A-3

Defining ASAP2 Information . A-4

Generating an ASAP2 File . A-6

Customizing an ASAP2 File . A-10

Structure of the ASAP2 File . A-17

Index

vi Contents

Preface

This section includes the following topics:

Prerequisites (p. viii) What you need to know before reading this document and
working with the Real-Time Workshop® Embedded
Coder.

Related Products (p. ix) Products required when using the Real-Time Workshop
Embedded Coder; also products that are especially
relevant to the kinds of tasks you can perform with the
Real-Time Workshop Embedded Coder.

Installing the Real-Time Workshop
Embedded Coder (p. xi)

Installation information on the Real-Time Workshop
Embedded Coder.

Typographical Conventions (p. xii) Formatting conventions used in this document.

 Preface

viii

Prerequisites
This document assumes you have basic familiarity with MATLAB®, Simulink®,
and Real-Time Workshop®. Minimally, you should read and work through all
tutorials in the Real-Time Workshop documentation.

Related Products

ix

Related Products
The MathWorks provides several products that are especially relevant to the
kinds of tasks you can perform with the Real-Time Workshop Embedded
Coder. They are listed in the table below.

The Real-Time Workshop Embedded Coder requires these products:

• MATLAB 6.5.1 (Release 13SP1)

• Simulink 5.1(Release 13SP1)

• Real-Time Workshop 5.1 (Release 13SP1)

For more information about any of these products, see either:

• The online documentation for that product if it is installed or if you are
reading the documentation from the CD

• The MathWorks Web site, at http://www.mathworks.com; see the “products”
section

Note The toolboxes listed below all include functions that extend the
capabilities of MATLAB. The blocksets all include blocks that extend the
capabilities of Simulink.

Product Description

Communications
Blockset

Design and simulate communication systems

Control System Toolbox Design and analyze feedback control systems

Gauges Blockset Monitor signals with graphical instruments

DSP Blockset Design and simulate DSP systems

Embedded Target for
Motorola MPC555

Generate Real-Time Workshop Embedded
Coder production code for the Motorola
MPC555

 Preface

x

Embedded Target for the
TI TMS320C6000™ DSP
Platform

Deploy and validate DSP designs on Texas
Instruments C6000 digital signal processors

Fixed-Point Blockset Design and simulate fixed-point systems

Fuzzy Logic Toolbox Design and simulate fuzzy logic systems

MATLAB Link for Code
Composer Studio™
Development Tools

Use MATLAB with RTDX™-enabled Texas
Instruments digital signal processors

Nonlinear Control
Design Blockset

Optimize design parameters in nonlinear
control systems

Real-Time Windows
Target

Run Simulink and Stateflow models on a PC in
real time

Real-Time Workshop Generate C code from Simulink models

SimPowerSystems Model and simulate electrical power systems

Simulink Design and simulate continuous- and
discrete-time systems

Stateflow® Design and simulate event-driven systems

Stateflow Coder Generate C code from Stateflow charts

Statistics Toolbox Apply statistical algorithms and probability
models

xPC Target Perform real-time rapid prototyping using PC
hardware

xPC Target Embedded
Option

Deploy real-time applications on PC hardware

Product Description

Installing the Real-Time Workshop Embedded Coder

xi

Installing the Real-Time Workshop Embedded Coder
Your platform-specific MATLAB Installation Guide provides all of the
information you need to install the Real-Time Workshop Embedded Coder.

Prior to installing the Real-Time Workshop Embedded Coder, you must obtain
a License File or Personal License Password from The MathWorks. The
License File or Personal License Password identifies the products you are
permitted to install and use.

The Real-Time Workshop Embedded Coder has certain product prerequisites
that must be met for proper installation and execution.

If you experience installation difficulties and have Web access, connect to the
MathWorks home page (http://www.mathworks.com). Look for the Installation
Troubleshooting Wizard in the Support section.

Licensed
Product

Prerequisite
Products

Additional Information

Simulink MATLAB 6.5.1
(Release
13SP1)

Allows installation of Simulink.

The Real-Time
Workshop

Simulink 5.1
(Release
13SP1

Requires Borland C, LCC, Visual
C/C++, or Watcom C compiler to
create MATLAB MEX-files on your
platform.

The Real-Time
Workshop
Embedded
Coder

The Real-Time
Workshop 5.1
(Release
13SP1)

Allows installation of Real-Time
Workshop Embedded Coder.

 Preface

xii

Typographical Conventions
This manual uses some or all of these conventions.

Item Convention Example

Example code Monospace font To assign the value 5 to A,
enter

A = 5

Function names, syntax,
filenames, directory/folder
names, and user input

Monospace font The cos function finds the
cosine of each array element.
Syntax line example is
MLGetVar ML_var_name

Buttons and keys Boldface with book title caps Press the Enter key.

Literal strings (in syntax
descriptions in reference
chapters)

Monospace bold for literals f = freqspace(n,'whole')

Mathematical
expressions

Italics for variables
Standard text font for functions,
operators, and constants

This vector represents the
polynomial p = x2 + 2x + 3.

MATLAB output Monospace font MATLAB responds with
A =

5

Menu and dialog box titles Boldface with book title caps Choose the File Options
menu.

New terms and for
emphasis

Italics An array is an ordered
collection of information.

Omitted input arguments (...) ellipsis denotes all of the
input/output arguments from
preceding syntaxes.

[c,ia,ib] = union(...)

String variables (from a
finite list)

Monospace italics sysc = d2c(sysd,'method')

1
Product Overview

This section contains the following topics:

Introduction (p. 1-2) Summary of the features of the Real-Time Workshop
Embedded Coder.

Real-Time Workshop Embedded Coder
Demos and Examples (p. 1-4)

Summary of interactive demos and example code
provided to help you learn about the Real-Time Workshop
Embedded Coder. If you are reading this document online
in the MATLAB Help browser, you can run the demos
from the table of demos.

1 Product Overview

1-2

Introduction
The Real-Time Workshop® Embedded Coder is a separate, add-on product for
use with Real-Time Workshop.

The Real-Time Workshop Embedded Coder provides a framework for the
development of production code that is optimized for speed, memory usage, and
simplicity. The Real-Time Workshop Embedded Coder is intended for use in
embedded systems.

Real-Time Workshop Embedded Coder generates code that is easy to read,
trace, and customize for your production environment.

The Real-Time Workshop Embedded Coder generates code in the Embedded-C
format. Optimizations inherent in the Embedded-C code format include

• Use of real-time model data structure optimizes memory usage specifically
for your model. (In many cases, this structure can be removed entirely from
the generated code.)

• Simplified calling interface reduces overhead and lets you easily incorporate
the generated code into hand-written application code. Model output and
update functions are combined into a single routine.

• In-lined S-functions (required) reduce calling overhead and code size.

• Static memory allocation reduces overhead and promotes deterministic
performance.

The Real-Time Workshop Embedded Coder supports the following key
features:

• Automatic generation of an example main program, with comments
detailing how to deploy the code generated for a model with or without an
operating system

• Automatic generation of a deterministic multirate scheduler for single- and
multitasking environments (further simplifying code deployment)

• Single- and multiple instance code generation; both using static memory
allocation

• Supports asynchronous interrupt-driven execution of models with either
single or multiple sample rates

• Integer only code generation

Introduction

1-3

• Floating-point code generation (ANSI or ISO C library calls supported)

• Automatic generation of S-function wrappers, allowing you to validate the
generated code in Simulink (Software-in-the-loop)

• Detailed HTML report fully documents the generated code, including active
hyperlinks that trace code segments back to the model. The report describes
code modules and helps to identify code generation optimizations relevant to
your program.

• Code generation options let you optimize performance of data initialization
and reduce ROM usage.

• Custom storage classes give you precise control over data symbols in the
generated code, allowing you to interface virtually any class of structured or
unstructured data.

• Automatic generation of an ASAP2 data export file to interface with
commercial automotive calibration systems.

• Full support for all features of Simulink external mode. (See the “External
Mode” section of the Real-Time Workshop documentation.)

This document describes the components of the Real-Time Workshop
Embedded Coder provided with Real-Time Workshop. It also describes options
for optimizing your generated code, and for automatically generating an
S-function wrapper that calls your Real-Time Workshop Embedded Coder
generated code from Simulink. In addition, certain restrictions that apply to
the use of the Real-Time Workshop Embedded Coder are discussed.

We assume you have read “Program Architecture” and “Models with Multiple
Sample Rates” in the Real-Time Workshop documentation. Those sections give
a general overview of the architecture and execution of programs generated by
Real-Time Workshop.

1 Product Overview

1-4

Real-Time Workshop Embedded Coder Demos
and Examples

Demos
We have provided a number of demos to help you become familiar with features
of the Real-Time Workshop Embedded Coder and to inspect generated code.
These demos illustrate features specific to the Real-Time Workshop Embedded
Coder as well as general Real-Time Workshop features as used with the
Embedded Coder.

If you are reading this document online in the MATLAB Help browser, you can
run the demos by clicking on the links in the Command column of the following
table.

Alternatively, you can access the demo suite by typing commands from the
Command column of the table at the MATLAB command prompt, as in this
example:

ecoderdemos

Table 1-1: Real-Time Workshop Embedded Coder Demos

 Command Demo Topic

ecoderdemos Top-level demo containing buttons to run the other demos of the
Real-Time Workshop Embedded Coder demo suite

ecodertutorial Interactive tutorial on application deployment, configuring options,
custom target development, and backwards compatibility issues.

asap2demo ASAP2 data file generation

atomicdemo Nonvirtual subsystem code generation

cbdemo High-level optimizations in generated code

cscdemos Code generation with custom storage classes.

cscdesignintro How to design your own custom storage classes.

cscpredefineddemo Use of the predefined custom storage classes

Real-Time Workshop Embedded Coder Demos and Examples

1-5

ECRobot Target Example
The ECRobot (Embedded Coder Robot) target is a simple example of a custom
target based on the Real-Time Workshop Embedded Coder.

Programs generated by the ECRobot target run on the Robot Command System
(RCX™)1 module of the LEGO® MINDSTORMS™ Robotics Invention
System2.0™.

cscvariantdemo Use of variant parameters

cscgetsetdemo Use of the GetSet custom storage class with data store memory blocks

ecdemo Generation of callable procedure with pure integer code; also creates
HTML code generation report

ecifdemo Use of control flow constructs such as if, while, and for

exprfolding Expression folding: a technique that improves code efficiency by
reducing use of temporary variables and expressions

hierdemo Resolution of variable names within a model hierarchy

objectdemo Use of Simulink data objects in simulation and code generation

rtwecexamplemain Generating an example main program for a bare-board target without an
operating system.

sfexfold Expression folding in a model that integrates Stateflow and Embedded
Coder

ssdemo Advanced features of Embedded Coder, including subsystem code
generation, HTML code generation report, and automatic S-function
wrapper generation

tunabledemo Use of tunable expressions in generated code

Table 1-1: Real-Time Workshop Embedded Coder Demos (Continued)

 Command Demo Topic

1. MINDSTORMS, RCX, Robotics Invention System 2.0, and LEGO are registered
trademarks of The LEGO Group.

1 Product Overview

1-6

This platform affords an inexpensive and simple way to study concepts and
techniques essential to developing a custom embedded target, and to develop,
run and observe generated programs. The files included with the target
illustrate typical approaches to problems encountered in custom target
development, including

• Interfacing a Real-Time Workshop Embedded Coder generated program to
an external real-time operating system (RTOS) or kernel.

• Implementing device drivers, via wrapper S-functions, for use in simulation
and inlined code generation.

• Customizing a system target file by adding code generation options and
adding the target to the System Target File Browser.

• Customizing a template makefile to use a target specific cross-compiler and
download generated code to the target hardware.

The ECRobot target, originally developed as a training class example and
demonstration, is now available to all Real-Time Workshop Embedded Coder
users. The ECRobot target files are automatically installed with the Real-Time
Workshop Embedded Coder. Source code files, control files, demonstration
models, and documentation for the target are installed in the directory
matlabroot/toolbox/rtw/targets/ECRobot.

Note The ECRobot target requires an operating system kernel, a
cross-compiler and support utilities that are available on the Web. For
instructions on how to obtain and install these utilities, see the file
readme.html in the
matlabroot/toolbox/rtw/targets/ECRobot/documentation directory.

2
Data Structures and
Program Execution

This section describes the main data structures of the code generated by Real-Time Workshop
Embedded Coder. It also summarizes the code modules and header files that make up a Real-Time
Workshop Embedded Coder program, and describes where to find them. In addition, this section
describes how Real-Time Workshop Embedded Coder generated programs execute, from the top level
down to timer interrupt level. This section contains the following topics:

Data Structures and Code Modules
(p. 2-2)

Main data structures, code modules and header files of
the Real-Time Workshop Embedded Coder.

Program Execution (p. 2-9) Overview of Real-Time Workshop Embedded Coder
generated programs.

Stand-Alone Program Execution
(p. 2-10)

Execution and task management in stand-alone (bare
board) generated programs.

VxWorks Example Main Program
Execution (p. 2-18)

Execution and task management of example programs
deployed under VxWorks real-time operating system.

Model Entry Points (p. 2-20) Description of model entry-point functions and how to call
them.

The Static Main Program Module
(p. 2-23)

Description of the alternative static (nongenerated) main
program module.

2 Data Structures and Program Execution

2-2

Data Structures and Code Modules

Real-Time Model Data Structure
The Real-Time Workshop Embedded Coder encapsulates information about
the root model in the real-time model data structure. We refer to the real-time
model data structure as rtM.

To reduce memory requirements, rtM contains only information required by
your model. For example, the fields related to data logging are generated only
if the model has the MAT-file logging code generation option enabled. rtM may
also contain model-specific rtM information related to timing, solvers, and
model data such as inputs, outputs, states, and parameters.

By default, rtM contains an error status field that your code can monitor or set.
If you do not need to log or monitor error status in your application, select the
Suppress error status in real-time model data structure option. This will
further reduce memory usage. Selecting this option may also cause rtM to
disappear completely from the generated code.

The symbol definitions for rtM in generated code are as follows:

• Structure definition (in model.h):
struct _RT_MODEL_model_Tag {
...
};

• Forward declaration typedef (in model_types.h):
typedef struct _RT_MODEL_model_Tag RT_MODEL_model;

• Variable and pointer declarations (in model.c):
RT_MODEL_model model_M_;
RT_MODEL_model *model_M = &model_M_;

• Variable export declaration (in model.h):
extern RT_MODEL_model *model_M;

Accessor Macros
To enable you to interface your code to rtM, the Real-Time Workshop
Embedded Coder provides accessor macros. Your code can use the macros, and
access the fields they reference, via model.h.

Data Structures and Code Modules

2-3

If you are interfacing your code to a single model, you should refer to its rtM
generically as model_M, and use the macros to access model_M, as in the
following code fragment.

#include "model.h"
const char *errStatus = rtMGetErrorStatus(model_M);

To interface your code to rtMs of more than one model, simply include the *
headers for each model, as in the following code fragment.

#include "modelA.h" /* Make model A entry points visible */
#include "modelB.h" /* Make model B entry points visible */

void myHandWrittenFunction(void)
{
const char_T *errStatus;

modelA_initialize(1); /* Call model A initializer */
modelB_initialize(1); /* Call model B initializer */
/* Refer to model A's rtM */
errStatus = rtmGetErrorStatus(modelA_M);
/* Refer to model B's rtM */
errStatus = rtmGetErrorStatus(modelB_M);

}

Table 2-1 summarizes the rtM error status macros. To view other rtM related
macros that are applicable to your specific model, generate code with a code
generation report (See “Generating a Code Generation Report” on page 3–10);
then view model.h via the hyperlink in the report.

2 Data Structures and Program Execution

2-4

Code Modules
This section summarizes the code modules and header files that make up a
Real-Time Workshop Embedded Coder program, and describes where to find
them.

Note that in most cases, the easiest way to locate and examine the generated
code files is to use the Real-Time Workshop Embedded Coder code generation
report. The code generation report provides a table of hyperlinks that let you
view the generated code in the MATLAB Help browser. See “Generating a Code
Generation Report” on page 3–10 for further information.

Generated Code Modules
The Real-Time Workshop Embedded Coder creates a build directory in your
working directory to store generated source code. The build directory also
contains object files, a makefile, and other files created during the code
generation process. The default name of the build directory is model_ert_rtw.

Table 2-2 summarizes the structure of source code generated by the Real-Time
Workshop Embedded Coder.

Table 2-1: rtM Error Status Macros

Macro Argument(s) Return
Type

Description

 rtmGetErrorStatus(rtm) rtm: reference
to real-time
model struct

char * Returns most recent error
status string.

rtmSetErrorStatus(rtm,val) rtm: reference
to real-time
model struct

val: C string

N/A Set error status field of
real-time model struct to
the string val.

Data Structures and Code Modules

2-5

Note The file packaging of the Real-Time Workshop Embedded Coder differs
slightly (but significantly) from the file packaging employed by the GRT, GRT
malloc, and other non-embedded targets. See the Real-Time Workshop
documentation for further information.

Table 2-2: Real-Time Workshop Embedded Coder File Packaging

File Description

model.c Contains entry points for all code implementing the model algorithm
(model_step, model_initialize, model_terminate,
model_SetEventsForThisBaseStep).

model_private.h Contains local macros and local data that are required by the model and
subsystems. This file is included by the generated source files in the
model. You do not need to include model_private.h when interfacing
hand-written code to a model.

model.h Declares model data structures and a public interface to the model entry
points and data structures. Also provides an interface to the real-time
model data structure (model_rtM) via accessor macros. model.h is
included by subsystem .c files in the model.

If you are interfacing your hand-written code to generated code for one
or more models, you should include model.h for each model to which you
want to interface.

model_data.c
(conditional)

model_data.c is conditionally generated. It contains the declarations for
the parameters data structure and the constant block I/O data structure.
If these data structures are not used in the model, model_data.c is not
generated. Note that these structures are declared extern in model.h.

model_types.h Provides forward declarations for the real-time model data structure and
the parameters data structure. These may be needed by function
declarations of reusable functions. model_types.h is included by all the
generated header files in the model.

2 Data Structures and Program Execution

2-6

Note You can also control generation of code at the subsystem level, for any
nonvirtual subsystem.You can instruct Real-Time Workshop to generate
separate functions, within separate code files, for any nonvirtual subsystems.
You can control both the names of the functions and of the code files generated
from nonvirtual subsystems. See “Nonvirtual Subsystem Code Generation” in
the Real-Time Workshop documentation for further information. Also, you can
use custom storage classes to partition generated data structures. See
“Custom Storage Classes” on page 5-1 for further information.

ert_main.c
(optional)

This file is generated only if the Generate an example main program
option is on. (This option is on by default). See “Generating the Main
Program” on page 2-7.

autobuild.h
(optional)

This file is generated only if the Generate code only and Generate an
example main program options are off. (See “Generating the Main
Program” on page 2-7.)

autobuild.h contains #include directives required by the static version
of the ert_main.c main program module. Since the static ert_main.c is
not created at code generation time, it includes autobuild.h to access
model-specific data structures and entry points.

See “The Static Main Program Module” on page 2-23 for further
information.

model_pt.c
(optional)

Provides data structures that enable a running program to access model
parameters without use of external mode. To learn how to generate and
use the model_pt.c file, see “C API for Parameter Tuning” in the
Real-Time Workshop documentation.

model_bio.c
(optional)

Provides data structures that enable your code to access block outputs.
To learn how to generate and use the model_bio.c file, see “Signal
Monitoring via Block Outputs” in the Real-Time Workshop
documentation.

Table 2-2: Real-Time Workshop Embedded Coder File Packaging (Continued)

File Description

Data Structures and Code Modules

2-7

User-Written Code Modules
Code that you write to interface with generated model code usually includes a
customized main module (based on a main program provided by the Real-Time
Workshop Embedded Coder), and may also include interrupt handlers, device
driver blocks and other S-functions, and other supervisory or supporting code.

We recommend that you establish a working directory for your own code
modules. Your working directory should be on the MATLAB path. You must
also modify the Real-Time Workshop Embedded Coder template makefile and
system target file so that the build process can find your source and object files.
See “Targeting Real-Time Systems” in the Real-Time Workshop
documentation for information.

Generating the Main Program
The Generate an example main program option controls whether or not
ert_main.c is generated. This option is located in the ERT code generation
options (3) category of the Real-Time Workshop pane of the Simulation
Parameters dialog box, as shown in this figure.

Figure 2-1: Options for Generating a Main Program

By default, Generate an example main program is on. When Generate an
example main program is selected, the Target operating system pop-up
menu is enabled. This menu lets you choose the following options:

2 Data Structures and Program Execution

2-8

• BareBoardExample: Generate a bare-board main program designed to run
under control of a real-time clock, without a real-time operating system.

• VxWorksExample: Generate a fully commented example showing how to
deploy the code under the VxWorks real-time operating system.

Regardless of which Target operating system you select, ert_main.c includes

• The main() function for the generated program

• Task scheduling code that determines how and when block computations
execute on each time step of the model

The operation of the main program and the scheduling algorithm employed
depend primarily upon whether your model is single-rate or multi-rate, and
also upon your model’s solver mode (SingleTasking vs. MultiTasking). These
are described in detail in “Program Execution” on page 2-9.

If you turn the Generate an example main program option off, the Real-Time
Workshop Embedded Coder provides the module ert_main.c as a basis for
your custom modifications (see “The Static Main Program Module” on
page 2-23).

Note Once you have generated and customized the main program, you
should take care to turn Generate an example main program off to prevent
regenerating the main module and overwriting your customized version.

Program Execution

2-9

Program Execution
The following sections describe how programs generated by Real-Time
Workshop Embedded Coder execute, from the top level down to timer interrupt
level:

• “Stand-Alone Program Execution” on page 2-10 describes the operation of
self-sufficient example programs that do not require an external real-time
executive or operating system.

• “VxWorks Example Main Program Execution” on page 2-18 describes the
operation of example programs designed for deployment under the VxWorks
real-time operating system.

• “Model Entry Points” on page 2-20 describes the model functions that are
generated for both stand-alone and VxWorks example programs.

2 Data Structures and Program Execution

2-10

Stand-Alone Program Execution
By default, the Real-Time Workshop Embedded Coder generates self-sufficient
programs that do not require an external real-time executive or operating
system. We refer to such programs as stand-alone programs. A stand-alone
program requires some minimal modification to be adapted to the target
hardware; these modifications are described in the following sections. The
stand-alone program architecture supports execution of models with either
single or multiple sample rates.

To generate a stand-alone program:

1 In the ERT code generation options (3) category of the Real-Time
Workshop tab of the Simulation Parameters dialog box, select the
Generate an example main program option (this option is on by default).

2 When Generate an example main program is selected, the Target
operating system pop-up menu is enabled. Select BareBoardExample from
this menu (this option is the default selection).

The core of a stand-alone program is the main loop. On each iteration, the main
loop executes a background or null task and checks for a termination condition.

The main loop is periodically interrupted by a timer. The Real-Time Workshop
function rt_OneStep is either installed as a timer interrupt service routine
(ISR), or called from a timer ISR at each clock step.

The execution driver, rt_OneStep, sequences calls to the model_step function.
The operation of rt_OneStep differs depending on whether the generating
model is single-rate or multi-rate. In a single-rate model, rt_OneStep simply
calls the model_step function. In a multi-rate model, rt_OneStep prioritizes
and schedules execution of blocks according to the rates at which they run.

If your model includes device driver blocks, the model_step function will
incorporate your inlined driver code to perform I/O functions such as reading
inputs from an analog-digital converter (ADC) or writing computed outputs to
a digital-analog converter (DAC).

Stand-Alone Program Execution

2-11

Main Program

Overview of Operation
The following pseudocode shows the execution of a Real-Time Workshop
Embedded Coder main program.

main()
{
Initialization (including installation of rt_OneStep as an

interrupt service routine for a real-time clock)
Initialize and start timer hardware
Enable interupts
While(not Error) and (time < final time)

Background task
EndWhile
Disable interrupts (Disable rt_OneStep from executing)
Complete any background tasks
Shutdown

}

The pseudocode is a design for a harness program to drive your model. The
ert_main.c program only partially implements this design. You must modify
it according to your specifications.

Guidelines for Modifying the Main Program
This section describes the minimal modifications you should make in your
production version of ert_main.c to implement your harness program.

• After calling model_initialize:

- Initialize target-specific data structures and hardware such as ADCs or
DACs.

- Install rt_OneStep as a timer ISR.

- Initialize timer hardware.

- Enable timer interrupts and start the timer.

2 Data Structures and Program Execution

2-12

Note rtM is not in a valid state until model_initialize has been called.
Servicing of timer interrupts should not begin until model_initialize has
been called.

• Optionally, insert background task calls in the main loop.

• On termination of main loop (if applicable):

- Disable timer interrupts.

- Perform target-specific cleanup such as zeroing DACs.

- Detect and handle errors. Note that even if your program is designed to
run indefinitely, you may need to handle severe error conditions such as
timer interrupt overruns.

You can use the macros rtMGetErrorStatus and rtMSetErrorStatus to
detect and signal errors.

rt_OneStep

Overview of Operation
The operation of rt_OneStep depends upon

• Whether your model is single-rate or multi-rate. In a single-rate model, the
sample times of all blocks in the model, and the model’s fixed step size, are
the same. Any model in which the sample times and step size do not meet
these conditions is termed multi-rate.

• Your model’s solver mode (SingleTasking vs. MultiTasking)

Table 2-3 summarizes the permitted solver modes for single-rate and
multi-rate models. Note that for a single-rate model, only SingleTasking
solver mode is allowed.

Stand-Alone Program Execution

2-13

The generated code for rt_OneStep (and associated timing data structures and
support functions) is tailored to the number of rates in the model and to the
solver mode. The following sections discuss each possible case.

Single-Rate Singletasking Operation. Since by definition the only legal solver mode
for a single-rate model is SingleTasking, we refer to this case simply as
“single-rate” operation.

The following pseudocode shows the design of rt_OneStep in a single-rate
program.

rt_OneStep()
{
Check for interrupt overflow or other error
Enable "rt_OneStep" (timer) interrupt
ModelStep-- Time step combines output,logging,update

}

Single-rate rt_OneStep is designed to execute model_step within a single clock
period. To enforce this timing constraint, rt_OneStep maintains and checks a
timer overrun flag. On entry, timer interrupts are disabled until the overrun
flag and other error conditions have been checked. If the overrun flag is clear,
rt_OneStep sets the flag, and proceeds with timer interrupts enabled.

The overrun flag is cleared only upon successful return from model_step.
Therefore, if rt_OneStep is reinterrupted before completing model_step, the
reinterruption will be detected through the overrun flag.

Table 2-3: Permitted Solver Modes for
Real-Time Workshop Embedded Coder Targeted Models

Mode Single-Rate Multi-Rate

SingleTasking Allowed Allowed

MultiTasking Disallowed Allowed

Auto Allowed

(defaults to
SingleTasking)

Allowed

(defaults to MultiTasking)

2 Data Structures and Program Execution

2-14

Reinterruption of rt_OneStep by the timer is an error condition. If this
condition is detected rt_OneStep signals an error and returns immediately.
(Note that you can change this behavior if you want to handle the condition
differently.)

Note that the design of rt_OneStep assumes that interrupts are disabled before
rt_OneStep is called. rt_OneStep should be noninterruptible until the
interrupt overflow flag has been checked.

Multi-Rate MultiTasking Operation. The following pseudocode shows the design of
rt_OneStep in a multi-rate multitasking program.

rt_OneStep()
{
Check for base-rate interrupt overflow
Enable "rt_OneStep" interrupt
Determine which rates need to run this time step

ModelStep(tid=0) --base-rate time step

For i=1:NumTasks -- iterate over sub-rate tasks
Check for sub-rate interrupt overflow
If (sub-rate task i is scheduled)
ModelStep(tid=i) --sub-rate time step

EndIf
EndFor

}

In a multi-rate multitasking system, the Real-Time Workshop Embedded
Coder uses a prioritized, preemptive multitasking scheme to execute the
different sample rates in your model.

The execution of blocks having different sample rates is broken into tasks.
Each block that executes at a given sample rate is assigned a task identifier
(tid), which associates it with a task that executes at that rate. Where there
are NumTasks tasks in the system, the range of task identifiers is 0..NumTasks-1.

Tasks are prioritized, in descending order, by rate. The base-rate task is the
task that runs at the fastest rate in the system (the hardware clock rate). The
base-rate task has highest priority (tid 0). The next fastest task (tid 1) has the
next highest priority, and so on down to the slowest, lowest priority task (tid
NumTasks-1).

Stand-Alone Program Execution

2-15

The slower tasks, running at submultiples of the base rate, are called sub-rate
tasks.

On each invocation, rt_OneStep makes one or more calls to model_step,
passing in the appropriate tid. The tid informs model_step that all blocks
having that tid should execute. rt_OneStep always calls model_step (tid = 0)
because the base-rate task must execute on every clock step.

On each clock tick, rt_OneStep and model_step maintain scheduling counters
and event flags for each sub-rate task. Both the counters and the event flags are
implemented as arrays, indexed on tid.

The scheduling counters are maintained by the rate_monotonic_scheduler
function, which is called by model_step. The counters are, in effect, clock rate
dividers that count up the sample period associated with each sub-rate task.

The event flags indicate whether or not a given task is scheduled for execution.
rt_OneStep maintains the event flags via the
model_SetEventsForThisBaseStep function.When a counter indicates that a
task’s sample period has elapsed, model_SetEventsForThisBaseStep sets the
event flag for that task.

After updating its scheduling data structures and stepping the base-rate task,
rt_OneStep iterates over the scheduling flags in tid order, calling
model_step(tid) for any task whose flag is set. This ensures that tasks are
executed in order of priority.

The event flag array and loop variables used by rt_OneStep are stored as local
(stack) variables. This ensures that rt_OneStep is reentrant. If rt_OneStep is
reinterrupted, higher priority tasks will preempt lower priority tasks. Upon
return from interrupt, lower priority tasks will resume in the previously
scheduled order.

Multi-rate rt_OneStep also maintains an array of timer overrun flags.
rt_OneStep detects timer overrun, per task, by the same logic as single-rate
rt_OneStep.

Note that the design of rt_OneStep assumes that interrupts are disabled before
rt_OneStep is called. rt_OneStep should be noninterruptible until the
base-rate interrupt overflow flag has been checked (see pseudocode above).

Multi-Rate Singletasking Operation. In a multi-rate singletasking program, by
definition, all sample times in the model must be an integer multiple of the
model’s fixed-step size.

2 Data Structures and Program Execution

2-16

In a multi-rate singletasking program, blocks execute at different rates, but
under the same task identifier. The operation of rt_OneStep, in this case, is a
simplified version of multi-rate multitasking operation. The only task is the
base-rate task. On each clock tick, rt_OneStep checks the overrun flag and
calls model_step, passing in tid 0.

The scheduling function for a multi-rate singletasking program is
rate_scheduler (rather than rate_monotonic_scheduler). The generated
model_step code maintains scheduling counters on each clock tick, via the
rate_scheduler function. There is one counter for each sample rate in the
model. The counters are implemented as an array (model_M.cTaskTicks[])
within rtM.

The counters are, in effect, clock rate dividers that count up the sample period
associated with each sample rate in the model. When a counter indicates that
a sample period for a given rate has elapsed, rate_scheduler clears the
counter. This condition indicates that all blocks running at that rate should
execute on the next call to model_step.

model_step is responsible for checking the counters, using macros provided for
the purpose (rtmIsSampleHit and rtmIsSpecialSampleHit).

Guidelines for Modifying rt_OneStep
rt_OneStep does not require extensive modification. The only required
modification is to reenable interrupts after the overrun flag(s) and error
conditions have been checked. If applicable, you should also

• Save and restore your FPU context on entry and exit to rt_OneStep.

• Set model inputs associated with the base rate before calling model_step(0).

• Get model outputs associated with the base rate after calling
model_step(0).

• Set model inputs associated with sub-rates before calling model_step(tid)
in the sub-rate loop.

• Get model outputs associated with sub-rates after calling model_step(tid)
in the sub-rate loop.

Comments in rt_OneStep indicate the appropriate place to add your code.

In multi-rate rt_OneStep, you can improve performance by unrolling for and
while loops.

Stand-Alone Program Execution

2-17

In addition, you may choose to modify the overrun behavior to continue
execution after error recovery is complete.

You should not modify the way in which the counters, event flags, or other
timing data structures are set in rt_OneStep, or in functions called from
rt_OneStep. The rt_OneStep timing data structures (including rtM) and logic
are critical to correct operation of any Real-Time Workshop Embedded Coder
program.

2 Data Structures and Program Execution

2-18

VxWorks Example Main Program Execution

Overview
The Real-Time Workshop Embedded Coder VxWorks example main program
is provided as a template for the deployment of generated code in a real-time
operating system (RTOS) environment. We strongly recommend that you read
the preceding sections of this chapter as a prerequisite to working with the
VxWorks example main program. An understanding of the Real-Time
Workshop Embedded Coder scheduling and tasking concepts and algorithms,
described in “Stand-Alone Program Execution” on page 2–10, is essential to
understanding how generated code is adapted to an RTOS.

In addition, an understanding of how tasks are managed under VxWorks is
required. See your VxWorks documentation.

To generate a VXWorks example program:

1 In the ERT code generation options (3) category of the Real-Time
Workshop tab of the Simulation Parameters dialog box, select the
Generate an example main program option (this option is on by default).

2 When Generate an example main program is selected, the Target
operating system pop-up menu is enabled. Select VxWorksExample from
this menu.

Some modifications to the generated code are required; comments in the
generated code identify the required modifications.

Task Management
In a VxWorks example program, the main program and the base rate and
sub-rate tasks (if any) run as proritized tasks under VxWorks. The logic of a
VxWorks example program parallels that of a stand-alone program; the main
difference lies in the fact that base rate and sub-rate tasks are activated by
clock semaphores managed by the operating system, rather than directly by
timer interrupts.

Your application code must spawn model_main() as an independent VxWorks
task. The task priority you specify is passed in to model_main().

VxWorks Example Main Program Execution

2-19

As with a stand-alone program, the VxWorks example program architecture is
tailored to the number of rates in the model and to the solver mode (see Table
2-3). The following sections discuss each possible case.

Single-Rate Singletasking Operation
In a single-rate, singletasking model, model_main() spawns a base rate task,
tBaseRate. In this case tBaseRate is the functional equivalent to rtOneStep.
The base rate task is activated by a clock semaphore provided by VxWorks,
rather than by a timer interrupt. On each activation, tBaseRate calls
model_step.

Note that the clock rate granted by VxWorks may not be the same as the rate
requested by model_main.

Multi-Rate Multitasking Operation
In a multi-rate, multitasking model, model_main() spawns a base rate task
and sub-rate tasks. Task priorities are assigned by rate. The base rate task
calls model_step with tid 0, while the sub-rate tasks call model_step with
their associated tids. The base rate task and model_step are responsible for
maintaining event flags and scheduling counter, using the same rate
monotonic scheduler algorithm as a stand-alone program,

Multi-Rate Singletasking Operation
In a multi-rate, singletasking model, model_main() spawns only a base rate
task, tBaseRate. All rates run under this task. The base rate task is activated
by a clock semaphore provided by VxWorks, rather than by a timer interrupt.
On each activation, tBaseRate calls model_step.

model_step in turn calls the rate_scheduler utility, which maintains the
scheduling counters that determine which rates should execute. model_step is
responsible for checking the counters, using macros provided for the purpose
(rtmIsSampleHit and rtmIsSpecialSampleHit).

2 Data Structures and Program Execution

2-20

Model Entry Points
This section discusses the entry points to the generated code.

Note carefully that the calling interface generated for each of these functions
will differ significantly depending on how you set the Generate reusable code
option (See “Reusable Code Generation Options” on page 3-19).

By default, Generate reusable code is off, and the model entry point functions
access model data via statically allocated global data structures. When
Generate reusable code is on, model data structures are passed in (by
reference) as arguments to the model entry point functions. For efficiency, only
those data structures that are actually used in the model are passed in.
Therefore when Generate reusable code is on, the argument lists generated
for the entry point functions vary according to the requirements of the model.

The descriptions below document the default (Generate reusable code off)
calling interface generated for these functions.

The entry points are exported via model.h. To call the entry-point functions
from your hand-written code, add an #include model.h directive to your code.
If Generate reusable code is on, you must examine the generated code to
determine the calling interface required for these functions.

model_step

Default Calling Interface. In a single-rate model, the model_step function
prototype is

void model_step(void);

In a multi-rate model, the model_step function prototype is

void model_step(int_T tid);

where tid is a task identifier. The tid is determined by logic within
rt_OneStep (See “rt_OneStep” on page 2-12).

Operation. model_step combines the model output and update functions into a
single routine. model_step is designed to be called at interrupt level from
rt_OneStep, which is assumed to be invoked as a timer ISR.

Model Entry Points

2-21

Single-Rate Operation. In a single-rate model, model_step computes the current
value of all blocks. If logging is enabled, model_step updates logging variables.
If the model’s stop time is finite, model_step signals the end of execution when
the current time equals the stop time.

Multi-Rate Operation. In a multi-rate model, model_step execution is almost
identical to single-rate execution, except for the use of the task identifier (tid)
argument.

The caller (rt_OneStep) assigns each block a tid (See “rt_OneStep” on
page 2-12). model_step uses the tid argument to determine which blocks have
a sample hit (and therefore should execute).

Under any of the following conditions, model_step does not check the current
time against the stop time:

• The model’s stop time is set to inf.

• Logging is disabled.

• The Terminate function required option is selected.

Therefore, if any of these conditions are true, the program runs indefinitely.

model_initialize

Default Calling Interface. The model_initialize function prototype is

void model_initialize(boolean_T firstTime);

Operation. If firstTime equals 1 (TRUE), model_initialize initializes rtM and
other data structures private to the model. If firstTime equals 0 (FALSE),
model_initialize resets the model’s states, but does not initialize other data
structures.

The generated code calls model_initialize once, passing in firstTime as
1(TRUE).

model_terminate

Default Calling Interface. The model_terminate function prototype is

void model_terminate(void);

2 Data Structures and Program Execution

2-22

Operation. When model_terminate is called, blocks that have a terminate
function execute their terminate code. If logging is enabled, model_terminate
ends data logging. model_terminate should only be called once. If your
application runs indefinitely, you do not need the model_terminate function.

If you do not require a terminate function, see “Basic Code Generation Options”
on page 3-3 for information on using the Terminate function required option.
Note that if Terminate function required is off, the program runs indefinitely

model_SetEventsForThisBaseStep

Calling Interface. By default, the model_SetEventsForThisBaseStep function
prototype is

void model_SetEventsForThisBaseStep(boolean_T *eventFlags)

where eventFlags is a pointer to the model’s event flags array.

If Generate reusable code is on, an additional argument is included:

void model_SetEventsForThisBaseStep(boolean_T *eventFlags,
RT_MODEL_model *model_M);

where model_M is a pointer to the real-time model object.

Operation. The model_SetEventsForThisBaseStep function is a utility function
that is generated and called only for multi-rate, multitasking programs.

model_SetEventsForThisBaseStep maintains the event flags, which
determine which sub-rate tasks need to run on a given base rate time step.
model_SetEventsForThisBaseStep must be called prior to calling the
model_step function. See “Multi-Rate Multitasking Operation” on page 2-19
for further information.

Note The macro MODEL_SETEVENTS, defined in the static ert_main.c module,
provides a way to call model_SetEventsForThisBaseStep from a static main
program.

The Static Main Program Module

2-23

The Static Main Program Module
In most cases, the easiest strategy for deploying your generated code is to use
the Generate an example main program option to generate the ert_main.c
module (see “Generating the Main Program” on page 2-7).

However, if you turn the Generate an example main program option off, you
can use the module
matlabroot/rtw/c/ert/ert_main.c as a template example for developing
your embedded applications. ert_main.c is not part of the generated code; it is
provided as a basis for your custom modifications, and for use in simulation. If
your existing applications, developed prior to this release, depend upon
ert_main.c, you may need to continue using this module.

When developing applications using ert_main.c, we recommend that you copy
ert_main.c to your working directory and rename it to model_ert_main.c
before making modifications. Also, you must modify the template makefile
such that the build process will create model_ert_main.obj (on Unix,
model_ert_main.o) in the build directory.

ert_main.c contains

• rt_OneStep, a timer interrupt service routine (ISR). rt_OneStep calls
model_step to execute processing for one clock period of the model.

• A skeletal main function. As provided, main is useful in simulation only. You
must modify main for real-time interrupt-driven execution.

In the static version of ert_main.c, the operation of rt_OneStep and the main
function are essentially the same as described in “Stand-Alone Program
Execution” on page 2-10.

Modifying the Static Main Program
As in a generated program, a few modifications to the main loop and
rt_OneStep are necessary. See “Guidelines for Modifying the Main Program”
on page 2-11 and “Guidelines for Modifying rt_OneStep” on page 2-16.

Also, you should replace the rt_OneStep call in the main loop with a
background task call or null statement.

Other modifications you may need to make are

2 Data Structures and Program Execution

2-24

• If your model has multiple rates, note that multi-rate systems will not
operate correctly unless:

- The multi-rate scheduling code is removed. The relevant code is tagged
with the keyword REMOVE in comments (see also the Version 3.0 comments
in ert_main.c).

- Use the MODEL_SETEVENTS macro (defined in ert_main.c) to set the event
flags instead of accessing the flags directly. The relevant code is tagged
with the keyword REPLACE in comments.

• Remove old #include ertformat.h directives. ertformat.h will be obsoleted
in a future release. The following macros, formerly defined in ertformat.h,
are now defined within ert_main.c:
EXPAND_CONCAT
CONCAT
MODEL_INITIALIZE
MODEL_STEP
MODEL_TERMINATE
MODEL_SETEVENTS
RT_OBJ

See also the comments in ertformat.h.

• If applicable, follow comments in the code regarding where to add code for
reading/writing model I/O and saving/restoring FPU context.

• When the Generate code only and Generate an example main program
options are off, the Real-Time Workshop Embedded Coder generates the file
autobuild.h to provide an interface between the main module and
generated model code. If you create your own static main program module,
you would normally include autobuild.h.

Alternatively, you can suppress generation of autobuild.h, and include
model.h directly in your main module. To suppress generation of
autobuild.h, use the following statement in your system target file:
%assign AutoBuildProcedure = 0

• If you have cleared the Terminate function required option, remove or
comment out the following in your production version of ert_main.c:

- The #if TERMFCN... compile-time error check

- The call to MODEL_TERMINATE

The Static Main Program Module

2-25

• If you do not want to combine output and update functions, clear the Single
output/update function option and make the following changes in your
production version of ert_main.c:

- Replace calls to MODEL_STEP with calls to MODEL_OUTPUT and
MODEL_UPDATE.

- Remove the #if ONESTEPFCN... error check.

• The static ert_main.c module does not support the Generate Reusable
Code option. Use this option only if you are generating a main program. The
following error check will raise a compile-time error if Generate Reusable
Code is used illegally.
#if MULTI_INSTANCE_CODE==1

• The static ert_main.c module does not support the External Mode option.
Use this option only if you are generating a main program. The following
error check will raise a compile-time error if External Mode is used illegally.
#ifdef EXT_MODE

2 Data Structures and Program Execution

2-26

3
Code Generation Options
and Optimizations

This section contains the following topics:

Controlling and Optimizing the
Generated Code (p. 3-2)

Code generation options you can use to improve
performance and reduce code size.

Generating a Code Generation Report
(p. 3-10)

Describes how to generate a report including information
on the generated code and suggestions for optimization.
You can view the report in the MATLAB Help browser.
The report includes hyperlinks from the generated code
to the source blocks in your model.

Automatic S-Function Wrapper
Generation (p. 3-12)

How to integrate your Real-Time Workshop Embedded
Coder code into a model by generating S-function
wrappers.

Other Code Generation Options
(p. 3-15)

Summary of additional Real-Time Workshop Embedded
Coder code generation options, available via the
Simulation Parameters dialog box.

3 Code Generation Options and Optimizations

3-2

Controlling and Optimizing the Generated Code
The Real-Time Workshop Embedded Coder features a number of code
generation options that can help you further optimize the generated code. The
Real-Time Workshop Embedded Coder can also produce a code generation
report in HTML format. This report documents code modules and helps you to
identify optimizations that are relevant to your model.

“Basic Code Generation Options” on page 3-3 documents code generation
options you can use to improve performance and reduce code size.

“Controlling Stack Space Allocation” on page 3-8 discusses options related to
the storage of signals.

Please see “Optimizing the Model for Code Generation” in the Real-Time
Workshop documentation for information about code optimization techniques
common to all code formats.

Controlling and Optimizing the Generated Code

3-3

Basic Code Generation Options
To access the basic code generation options, select the Real-Time Workshop
pane of the Simulation Parameters dialog box. Then select ERT code
generation options (1) from the Category menu.

Figure 3-1 displays the basic code generation options (with default settings) for
the Real-Time Workshop Embedded Coder.

Figure 3-1: Basic Code Generation Options

Setting the basic code generation options as follows will result in more highly
optimized code:

• Consider clearing the Initialize internal data and Initialize external I/O
data options.

These options (both on by default) control whether internal data (block states
and block outputs) and external data (root inports and outports whose value
is zero) are initialized. Initializing the internal and external data whose
value is zero is a precaution and may not be necessary for your application.
Many embedded application environments initialize all RAM to zero at
startup, making Initialize internal data redundant.

However, be aware that if Initialize internal data is turned off, it is not
guaranteed that memory will be in a known state each time the generated
code begins execution. If you turn the option off, running a model (or a

3 Code Generation Options and Optimizations

3-4

generated S-function) multiple times can result in different answers for each
run.

This behavior is sometimes desirable. For example, you can turn off
Initialize internal data if you want to test the behavior of your design
during a warm boot (i.e., a restart without full system reinitializiation).

In cases where you have turned off Initialize internal data but still want to
get the same answer on every run from a Real-Time Workshop Embedded
Coder generated S-function, you can use either of the following MATLAB
commands before each run:
clear <SFcnName> (where SFcnName is the name of the S-function)

or
clear mex

A related option, Initialize floats and doubles to 0.0, lets you control the
representation of zero used during initialization. See “Initialize Floats and
Doubles to 0.0” on page 3–17.

Note that the code still initializes data structures whose value is not zero
when Initialize internal data and Initialize external I/O data are selected.

Note also that data of ImportedExtern or ImportedExternPointer storage
classes is never initialized, regardless of the settings of these options.

• Clear the Terminate function required option if you do not require a
terminate function for your model.

• Select the Single output/update function check box. Combining the output
and update functions is the default. This option generates the model_step
call, which reduces overhead and allows Real-Time Workshop to use more
local variables in the step function of the model.

• If your application uses only integer arithmetic, select the Integer code only
option to ensure that generated code contains no floating-point data or
operations. When this option is selected, an error is raised if any noninteger
data or expressions are encountered during code generation. The error
message reports the offending blocks and parameters.

• Clear the MAT-file logging option. This setting is the default, and is
recommended for embedded applications because it eliminates the extra code
and memory usage required to initialize, update, and clean up logging

Controlling and Optimizing the Generated Code

3-5

variables. In addition to these efficiencies, clearing the MAT-file logging
option has the following effects:

- Under certain conditions, code and storage associated with root output
ports are eliminated, achieving further efficiency. See “Virtualized Output
Ports Optimization” on page 3-6 for information.

- The model_step function does not check the current time against the stop
time. Therefore the generated program runs indefinitely, regardless of the
setting of the model’s stop time. The ert_main program displays a message
notifying the user that the program will run indefinitely.

3 Code Generation Options and Optimizations

3-6

Virtualized Output Ports Optimization
The virtualized output ports optimization lets you eliminate code and data
storage associated with root output ports under the following conditions:

1 The MAT-file logging option is cleared (this is the default for the Embedded
Coder).

2 The TLC variable FullRootOutputVector equals 0. This is the default for
the Embedded Coder.

3 The signal line entering the root output port is stored as a global variable.
(See the “Code Generation and the Build Process” chapter of the Real-Time
Workshop documentation for information on how to control signal storage in
generated code.)

To illustrate this feature, consider the model shown in this block diagram.
Assume that the signal exportedSig has exportedGlobal storage class.

In the default case (conditions 1 and 2 above are true), the output of the Gain
block is written to the signal storage location, exportedSig. No code or data is
generated for the Out1 block, which has become, in effect, a virtual block. This
is shown in the following code fragment.

/* Gain Block: <Root>/Gain */
 exportedSig = rtb_PulseGen * VirtOutPortLogOFF_P.Gain_Gain;

In cases where either the MAT-file logging option is enabled, or
FullRootOutputVector = 1, the generated code represents root output ports
as members of an external outputs vector.

The following code fragment was generated from the same model shown in the
previous example, but with MAT-file logging enabled. The output port is
represented as a member of the external outputs vector VirtOutPortLogON_Y.
The Gain block output value is copied to both exportedSig and to the external
outputs vector.

Controlling and Optimizing the Generated Code

3-7

/* Gain Block: <Root>/Gain */
 exportedSig = rtb_PulseGen * VirtOutPortLogON_P.Gain_Gain;

/* Outport Block: <Root>/Out1 */
 VirtOutPortLogON_Y.Out1 = exportedSig;

The overhead incurred by maintenance of data in the external outputs vector
can be significant for smaller models being used to perform benchmarks.

Note that you can force root output ports to be stored in the external outputs
vector (regardless of the setting of MAT-file logging) by setting the TLC
variable FullRootOutputVector to 1. You can do this by adding the statement

%assign FullRootOutputVector = 1

to the Embedded Coder system target file. Alternatively, you can enter the
assignment into the System Target File field on the Real-Time Workshop
pane of the Simulation Parameters dialog box.

Generating Code from Subsystems
When generating code from a subsystem, we recommend that you set the
sample times of all subsystem inports explicitly.

Generating Block Comments
When the Insert block descriptions in code option is selected, comments are
inserted into the code generated for any blocks that have text in their
Description fields.

To generate block comments:

1 Right-click on the block you want to comment. Select Block Properties from
the context menu. The Block Properties dialog box opens.

2 Type the comment into the Description field.

3 Select the Insert block descriptions in code option in the ERT code
generation options (1) category of the Real-Time Workshop pane.

3 Code Generation Options and Optimizations

3-8

Note For virtual blocks or blocks that have been removed due to block
reduction optimizations, no comments are generated.

Controlling Stack Space Allocation
Real-Time Workshop offers a number of options that let you control how
signals in your model are stored and represented in the generated code. This
section discusses options that:

• Let you control whether signal storage is declared in global memory space,
or locally in functions (i.e., in stack variables).

• Control the allocation of stack space when using local storage.

For a complete discussion of signal storage options, see the “Code Generation
and the Build Process” chapter of the Real-Time Workshop documentation.

If you want to store signals in stack space, you must turn the Local block
outputs option on. To do this:

1 Select the Advanced tab of the Simulation Parameters dialog box. Make
sure that the Signal storage reuse is on. If Signal storage reuse is off, the
Local block outputs option is not available.

2 Click Apply if necessary.

3 Select the Real-Time Workshop tab of the Simulation Parameters dialog
box.

4 From the Category menu, select General code generation options.

5 Select the Local block outputs option. Click Apply if necessary.

Your embedded application may be constrained by limited stack space. When
the Local block outputs option is on, you can limit the use of stack space by
using the following TLC variables:

• MaxStackSize: The total allocation size of local variables that are declared by
all functions in the entire model may not exceed MaxStackSize (in bytes).
MaxStackSize can be any positive integer. If the total size of local variables

Controlling and Optimizing the Generated Code

3-9

exceeds this maximum, the Target Language Compiler will allocate the
remaining variables in global, rather than local, memory.

The default value for MaxStackSize is rtInf, i.e., unlimited stack size.

• MaxStackVariableSize: Limits the size of any local variable declared in a
function to N bytes, where N>0. A variable whose size exceeds
MaxStackVariableSize will be allocated in global, rather than local,
memory.

To set either of these variables, use assign statements in the system target file
(ert.tlc), as in the following example:

%assign MaxStackSize = 4096

We recommend that you write your %assign statements in the Configure RTW
code generation settings section of the system target file. The %assign
statement is described in the Target Language Compiler documentation.

3 Code Generation Options and Optimizations

3-10

Generating a Code Generation Report
The Real-Time Workshop Embedded Coder code generation report is an
enhanced version of the HTML code generation report normally generated by
Real-Time Workshop. The report consists of several sections:

• The Generated Source Files section of the Contents pane contains a table of
source code files generated from your model. You can view the source code in
the MATLAB Help browser. Hyperlinks within the displayed source code let
you view the blocks or subsystems from which the code was generated. Click
on the hyperlinks to view the relevant blocks or subsystems in a Simulink
model window.

• The Summary section lists version and date information, TLC options used
in code generation, and Simulink model settings.

• The Optimizations section lists the optimizations used during the build, and
also those that are available. If you chose options that led to generation of
nonoptimal code, they are marked in red. This section can help you select
options that will better optimize your code.

• The report also includes information on other code generation options, code
dependencies, and links to relevant documentation.

To generate a code generation report:

1 Select the Real-Time Workshop tab of the Simulation Parameters dialog
box. Then select General code generation options from the Category
menu.

2 Select Generate HTML report, as shown in this picture.

Generating a Code Generation Report

3-11

3 Follow the usual procedure for generating code from your model or
subsystem.

4 Real-Time Workshop writes the code generation report file in the build
directory. The file is named model_codegen_rpt.html or
subsystem_codegen_rpt.html.

5 Real-Time Workshop automatically opens the MATLAB Help browser and
displays the code generation report.

Alternatively, you can view the code generation report in your Web browser.

3 Code Generation Options and Optimizations

3-12

Automatic S-Function Wrapper Generation
An S-function wrapper is an S-function that calls your C code from within
Simulink. S-function wrappers provide a standard interface between Simulink
and externally written code, allowing you to integrate your code into a model
with minimal modification. For a complete description of wrapper S-functions,
see the Simulink Writing S-Functions documentation.

Using the Real-Time Workshop Embedded Coder Create Simulink
(S-Function) block option, you can build, in one automated step:

• A noninlined C MEX S-function wrapper that calls Real-Time Workshop
Embedded Coder generated code

• A model containing the generated S-function block, ready for use with other
blocks or models

This is useful for code validation and simulation acceleration purposes.

When the Create Simulink (S-Function) block option is on, Real-Time
Workshop generates an additional source code file, model_sf.c, in the build
directory. This module contains the S-function that calls the Real-Time
Workshop Embedded Coder code that you deploy. This S-function can be used
within Simulink.

The build process then compiles and links model_sf.c with model.c and the
other Real-Time Workshop Embedded Coder generated code modules, building
a MEX-file. The MEX-file is named model_sf.mexext. (mexext is the file
extension for MEX-files on your platform, as given by the MATLAB mexext
command.) The MEX-file is stored in your working directory. Finally,
Real-Time Workshop creates and opens an untitled model containing the
generated S-Function block.

Generating an S-Function Wrapper
To generate an S-function wrapper for your Real-Time Workshop Embedded
Coder code:

1 Select the Real-Time Workshop tab of the Simulation Parameters dialog
box. Then select ERT code generation options (2) from the Category
menu.

2 Select the Create Simulink (S-Function) block option, as shown.

Automatic S-Function Wrapper Generation

3-13

3 Configure the other code generation options as required.

4 Click the Build button.

5 When the build process completes, an untitled model window opens. This
model contains the generated S-Function block.

6 Save the new model.

7 The generated S-Function block is now ready to use with other blocks or
models in Simulink.

3 Code Generation Options and Optimizations

3-14

Limitations
It is not possible to create multiple instances of a Real-Time Workshop
Embedded Coder generated S-Function block within a model, because the code
uses static memory allocation.

Other Code Generation Options

3-15

Other Code Generation Options
This section describes advanced Real-Time Workshop Embedded Coder code
generation options. These options are found in the ERT code generation
options (2) , ERT code generation options (3), and ERT code templates
items of the Category menu of the Real-Time Workshop pane of the
Simulation Parameters dialog box. The figures below display these code
generation options.

Figure 3-2: ERT Code Generation Options (2)

3 Code Generation Options and Optimizations

3-16

Figure 3-3: ERT Code Generation Options (3)

Figure 3-4: ERT Code Templates Options

The ERT code templates options are discussed in Chapter 4, “Advanced Code
Generation Features.”. The following sections describe the options in the ERT
code generation options (2) and ERT code generation options (3)
categories, in order of their appearance on the dialog box.

Other Code Generation Options

3-17

Create Simulink (S-Function) Block
See “Generating an S-Function Wrapper” on page 3-12 for information on this
feature.

Generate ASAP2 File
The Real-Time Workshop Embedded Coder Generate ASAP2 File code
generation option lets you export an ASAP2 file containing information about
your model during the code generation process.

The ASAP2 file generation process requires information about your model's
parameters and signals. Some of this information is contained in the model
itself. The rest must be supplied by using Simulink data objects with the
necessary properties. Simulink provides two data classes to assist you in
providing the necessary information. See “Generating ASAP2 Files” on
page A-1 for information on this feature.

Initialize Floats and Doubles to 0.0
This option lets you control how internal storage for floats and doubles is
initialized. This option affects code generation only if you have turned on the
Initialize internal data option (see “Basic Code Generation Options” on
page 3-3).

When this option is off, all internal storage (regardless of type) is cleared to the
integer bit pattern 0 (that is, all bits are off).

When this option is on (the default), additional code is generated to set float
and double storage explicitly to the value 0.0. This additional code is slightly
less efficient.

If the representation of floating-point zero used by your compiler and target
CPU is identical to the integer bit pattern 0, you can gain efficiency by using
the default (off).

Ignore Custom Storage Classes
When this option is selected, objects with custom storage classes are treated as
if their storage class attribute is set to Auto. By default this option is off for the
Real-Time Workshop Embedded Coder. See “Introduction to Custom Storage
Classes” on page 5-2 for further information.

3 Code Generation Options and Optimizations

3-18

External Mode
Selecting the External mode option turns on generation of code to support
external mode communication between host (Simulink) and target systems.
The Real-Time Workshop Embedded Coder supports all features of Simulink
external mode, as described in the “External Mode” section of the Real-Time
Workshop documentation.

If you are unfamiliar with external mode, we recommend that you start with
the external mode exercise in the “Quick Start Tutorials” section of the
Real-Time Workshop documentation.

Like the GRT, GRT malloc, and Tornado targets, the Real-Time Workshop
Embedded Coder supports host/target communication via TCP/IP, using the
standard ext_comm MEX-file. If you need to support external mode on a custom
target using your own low-level communications layer, see the “Targeting
Real-Time Systems” section of the Real-Time Workshop documentation for
detailed information on the external mode API.

Suppress Error Status in Real-Time Model
Data Structure
If you do not need to log or monitor error status in your application, select this
option.

By default, the real-time model data structure (rtM) includes an error status
field (data type string). This field lets you log and monitor error messages via
macros provided for this purpose (see model.h). The error status field is
initialized to NULL. If Suppress error status in real-time model data
structure is selected, the error status field is not included in rtM. Selecting this
option may also cause the real-time model data structure to disappear
completely from the generated code.

When generating code for multiple models that will be integrated together,
make sure that the Suppress error status in real-time model data structure
option is set the same for all of the models. Otherwise, the integrated
application may exhibit unexpected behavior. For example, if the option is
selected in one model but not in another, the error status may or may not be
registered by the integrated application.

Do not select Suppress error status in real-time model data structure if the
MAT-file logging option is also selected. The two options are incompatible.

Other Code Generation Options

3-19

Parameter Structure
The Parameter structure menu lets you control how parameter data is
generated for reusable subsystems. (If you are not familiar with reusable
subsystem code generation, see “Nonvirtual Subsystem Code Generation
Options” in the Real-Time Workshop documentation for further information.)

The Parameter structure menu is enabled when the Inline parameters
option is on. The menu lets you select the following options:

• Hierarchical: This option is the default. When the Hierarchical option is
selected, the Real-Time Workshop Embedded Coder generates a separate
header file, defining an independent parameter structure, for each
subsystem that meets the following conditions:

- The Reusable function option is selected in the subsystem’s RTW system
code pop-up menu, and the subsystem meets all conditions for generation
of reusable subsystem code.

- The subsystem does not access any parameters other than its own (such as
parameters of the root-level model).

When the Hierarchical option is selected, each generated subsystem
parameter structure is referenced as a substructure of the root-level
parameter data structure, which is therefore called a hierarchical data
structure.

• Non-hierarchical: When this option is selected, the Real-Time Workshop
Embedded Coder generates a single parameter data structure. This is a flat
data structure; subsystem parameters are defined as fields within this
structure.

Generate An Example Main Program
This option and the related Target operating system pop-up menu let you
generate a model-specific example main program module. See “Generating the
Main Program” on page 2-7.

Reusable Code Generation Options
The Generate reusable code option (and the related Reusable code error
diagnostic and Pass model I/O arguments as structure reference options)
let you generate reusable, reentrant code from a model or subsystem.

3 Code Generation Options and Optimizations

3-20

When this option is selected, data structures such as block states, parameters,
external outputs, etc. are passed in (by reference) as arguments to model_step
and other generated model functions. These data structures are also exported
via model.h.

When Generate reusable code is selected, Pass model I/O arguments as
structure reference is enabled. This option lets you control how model inputs
and outputs at the root level of the model are passed in to the model_step
function. When Pass model I/O arguments as structure reference is
deselected (the default), each root-level model input and output is passed to
model_step as a separate argument. When this option is selected, all root-level
inputs are packed into a struct that is passed to model_step as an argument.
Likewise, all root-level outputs are packed into a struct that is also passed to
model_step as an argument.

In some cases, the Real-Time Workshop Embedded Coder may generate code
that will compile but is not reentrant. For example, if any signal, DWork
structure, or parameter data has a storage class other than Auto, global data
structures will be generated. To handle such cases, the Reusable code error
diagnostic menu is enabled when Generate reusable code is selected. This
menu offers a choice of three severity levels for diagnostics to be displayed in
such cases:

• None: build proceeds without displaying a diagnostic message.
• Warn: build proceeds after displaying a warning message.
• Error: build aborts after displaying an error message.

In some cases, the Real-Time Workshop Embedded Coder is unable to generate
valid and compilable code. For example, if the model contains any of the
following, the code generated would be invalid:

• A Stateflow chart that outputs function-call events

• An S-function that is not code-reuse compliant

• A subsystem triggered by a wide function call trigger

In these cases, the build will terminate after reporting the problem.

When the Generate reusable code option is not selected (the default), model
data structures are statically allocated and accessed directly in the model code.
Therefore the model code is neither reusable nor reentrant.

Other Code Generation Options

3-21

Target Floating Point Math Environment
This pop-up menu provides two options. If you select the ANSI_C option (the
default), the Real-Time Workshop Embedded Coder generates calls to the
ANSI C (ANSI X3.159-1989) math library for floating-point functions. If you
select the ISO_C option, Real-Time Workshop Embedded Coder generates calls
to the ISO C (ISO/IEC 9899:1999) math library wherever possible.

If your target compiler supports the ISO C (ISO/IEC 9899:1999) math library,
we recommend selecting the ISO_C option and setting your compiler's ISO C
option. This will generate calls to the ISO C functions wherever possible (for
example, sqrtf() instead of sqrt() for single precision data) and ensure that
you obtain the best performance your target compiler offers.

If your target compiler does not support ISO C math library functions, use the
ANSI_C option.

3 Code Generation Options and Optimizations

3-22

4
Advanced Code
Generation Features

Introduction (p. 4-2) Overview of this chapter.

ERT Code Deployment Aids (p. 4-4) Describes the ERT code deployment aids buttons, which
provide quick access to features and information that can
help you to optimize your generated code.

Specifying Target-Specific Information
for Code Generation (p. 4-6)

How to use the STF_rtw_info_hook.m hook file to specify
correctly sized data types for your target environment.

Customizing the Target Build Process
via the STF_make_rtw Hook File
(p. 4-10)

Explains the build process hook mechanism and how to
use a STF_make_rtw_hook.m hook file to modify the build
process.

Auto-Configuring Models for Code
Generation (p. 4-15)

How to use the STF_make_rtw_hook.m hook file and
supporting utilities to automate the configuration of a
model during the code generation process.

Generating Efficient Code via
Optimized ERT Targets (p. 4-20)

Describes auto-configuring versions of the ERT target
that are optimized for fixed-point or floating-point code
generation.

Generating Custom Code File Banners
(p. 4-24)

How to generate custom banner comment sections in
generated code.

Custom File Processing Templates
(p. 4-28)

Describes a high-level TLC API for generating custom
code files.

4 Advanced Code Generation Features

4-2

Introduction
This chapter describes advanced code generation features supported by the
Real-Time Workshop Embedded Coder 3.2. These features fall into several
categories:

• Specification of target-specific properties: “Specifying Target-Specific
Information for Code Generation” on page 4-6 describes a mechanism for
ensuring that generated code uses correctly-sized data types for execution in
your target environment.

• Model configuration: Several sections describe features that support
automatic (as opposed to manual) configuration of model options for code
generation. The information in each of these sections builds upon the
previous section.

- “Customizing the Target Build Process via the STF_make_rtw Hook File”
on page 4-10 describes the general mechanism for adding target-specific
customizations to the build process.

- “Auto-Configuring Models for Code Generation” on page 4-15 shows how
to use this mechanism (along with supporting utilities) to set model
options affecting code generation automatically.

- A similar mechanism is used by two special versions of the ERT target,
optimized for fixed-point and floating-point code generation. These are
described in “Generating Efficient Code via Optimized ERT Targets” on
page 4-20.

• Custom code generation: These features let you directly customize generated
code by creating template files that are invoked during the TLC code
generation process. Basic knowledge of TLC is required to use these features.

- “Generating Custom Code File Banners” on page 4-24 describes a simple
way to generate file banners (useful for inserting your organization’s
copyrights and other common information into generated files).

- “Custom File Processing Templates” on page 4-28 describes a flexible and
powerful TLC API that lets you emit custom code to any generated file
(including both the standard generated model files and separate code
modules.)

Further information on these features and examples of their applications can
be found in the article “Creating Custom Code with Real-Time Workshop

Introduction

4-3

Embedded Coder 3.1” in the September, 2003 issue of MATLAB Digest. You
can find all issues of the MATLAB Digest online at the following URL:
http://www.mathworks.com/company/digest/.

4 Advanced Code Generation Features

4-4

ERT Code Deployment Aids
The ERT code deployment aids buttons provide quick access to features and
information that can help you to optimize your generated code. To access these
buttons, open the the Simulation Parameters dialog box and select the
Real-Time Workshop pane. Then select ERT code deployment aids from
Category menu, as shown in the figure below.

The ERT code deployment aids buttons are:

• Model Assistant Tool - documentation: Click this button to view online
help for the Model Assistant Tool in the MATLAB Help browser. You can also
view the Model Assistant Tool help by typing the MATLAB command
modelassistant('help')

• Model Assistant Tool - configuration: Click this button to open the Model
Assistant Tool and configure model options.

• Target code customization guide: Click this button to view the “Advanced
Code Generation Features,” chapter of the Real-Time Workshop Embedded
Coder User’s Guide (this chapter).

• Block summary support table: Click this button to view Simulink Block
Data Type Support Table in the MATLAB Help Browser. The table describes
the data types that are supported by the blocks in the main Simulink and
Fixed-Point libraries. The table also identifies blocks that are suitable for

ERT Code Deployment Aids

4-5

production code generation. You can also view the table by typing the
MATLAB command
showblockdatatypetable

• Tutorial: Click this button to open an interactive Real-Time Workshop
Embedded Coder tutorial demo in the in the MATLAB Help Browser. You
can also view the tutorial demo by typing the MATLAB command
ecodertutorial

• Demos: Click this button to open the Real-Time Workshop Embedded Coder
demo suite. You can also view the demos by typing the MATLAB command

ecoderdemos

4 Advanced Code Generation Features

4-6

Specifying Target-Specific Information
for Code Generation

Your custom target should specify word sizes for integer data types (e.g.,char,
short, int, and long), and for the C implementation-specific properties of your
target; the C language definition does not specify this information. To specify
such target-specific properties, your target must supply a hook file (referred to
as STF_rtw_info_hook.m.)

If this hook file is not supplied, code generation uses host-based default values
for these properties. These defaults will produce code that is correct when
executed on the host, but which may produce incorrect results when deployed
on the target hardware.

If the hook file already exists, the build process invokes this file to extract the
necessary target-specific information. Otherwise, the word size and C
implementation details default to values appropriate to the host system.

The STF_rtw_info_hook.m file implements a function (STF_rtw_info_hook)
that contains a switch statement structured as follows:

switch Action
 case 'wordlengths'
...
case 'cImplementation'
...

The case 'wordlengths' configures the word lengths for the C data types char,
int, short, and long, as appropriate for your target. These parameters are
specified via fields of the value structure. Default values are

value.CharNumBits = 8;
value.ShortNumBits = 16;
value.IntNumBits = 32;
value.LongNumBits = 32;

The case 'cImplementation' configures C implementation details for your
target. These parameters are specified via fields of the value structure.
Currently, the only such option supported is value.ShiftRightIntArith. The
default is true.

Specifying Target-Specific Information for Code Generation

4-7

File and Function Naming Conventions. To ensure that STF_rtw_info_hook is called
correctly by the build process, the following conditions must be met:

• The STF_rtw_info_hook file is on the MATLAB path.

• The filename is the name of your system target file (STF), appended to the
string _rtw_info_hook.m. For example, if you were generating code via a
custom system target file mytarget.tlc, you would name your
STF_rtw_info_hook.m file to mytarget_rtw_info_hook.m.

Setting Up STF_rtw_info_hook.m
To set up the STF_rtw_info_hook.m file described above for your target:

1 Copy the example hook file from
matlabroot\toolbox\rtw\targets\ecoder\hooks\ert_rtw_info_hook.m
to a desired directory. (It is common to locate the STF_rtw_info_hook.m file
in the same directory as the system target file.)

2 Rename ert_rtw_info_hook.m in accordance with “File and Function
Naming Conventions” on page 4-7 (for example, to
mytarget_rtw_info_hook.m if using mytarget.tlc).

3 Add the directory where mytarget_rtw_info_hook.m is stored to the
MATLAB path, if it is not already there.

4 Change the name of the function defined in the hook file to match your STF
(for example, mytarget_rtw_info_hook).

5 Configure the word lengths in the case 'wordlengths' of the switch
Action statement in the hook file. By default, target word sizes for char,
short, int, and long are specified as:

value.CharNumBits = 8;
value.ShortNumBits = 16;
value.IntNumBits = 32;
value.LongNumBits = 32;

The example hook file includes a table of target word lengths that gives
values for many types of microprocessors. (See also “Determining
Target-Specific Settings” on page 4-8.) These include the following CPUs:

4 Advanced Code Generation Features

4-8

- 32-bit floating-point: Motorola PPC, 683XX, Renesas (Hitachi)
SH- 2/SH-3, Renesas (Mitsubishi) M32R, Intel x86

- 32-bit fixed-point: TI C28xx, Infineon Tricore, ARM7

- 16-bit fixed-point: Motorola HC12, Infineon C166, TIC24xx, Renesas
(Hitachi) H8S

- 8-bit fixed-point: Motorola HC08

If your target is the host computer, uncomment the following code, which
will set word lengths appropriate for the host machine:

varargout{1} = rtwhostwordlengths(modelName);

6 Configure the C implementation details in the case 'cImplementation'of
the switch Action statement in the hook file. Currently, the only such
option supported is value.ShiftRightIntArith. Set this field true if shift
right on a signed integer is implemented as arithmetic shift, and false
otherwise. The default is true, as almost all targets implement arithmetic
right shift.

If your target is the host computer, use the following code:

varargout{1} = rtw_host_implementation_props(modelName);

Determining Target-Specific Settings. To confirm the target-specific information you
can consult the word size information in your C compiler’s limits.h file.

Another useful and robust method of determining the correct settings is to use
the demo model rtwtargetsettings. To obtain actual target settings, type the
demo name rtwtargetsettings at the MATLAB command prompt. Then
generate code from this demo, execute it on your target hardware, and examine
the code on the target system using your source level debugger. The signals in
the model are global variables in the generated code. By examining these
signal variables inside your debugger, you can determine the information
required by the STF_rtw_info_hook.m hook file.

Emulating Target-Specific Settings. You can emulate your target’s execution
environment during simulation, rapid prototyping, or for any arbitrary
Real-Time Workshop embedded target. To do this, you need to provide target
word lengths and implementation details within Simulink via the Production

Specifying Target-Specific Information for Code Generation

4-9

Hardware Characteristics settings in the Advanced pane of the Simulation
Parameters dialog.

When you generate code for execution on the production target, then the
Production Hardware Characteristics settings should match those in the
STF_rtw_info_hook.m file. A synchchronization mechanism for this is provided
in the ert_config_opt.m file.

If the Production Hardware Characteristics settings and the settings in the
STF_rtw_info_hook.m file do not match, Real-Time Workshop generates extra
code to emulate the production hardware characteristics.

Note The Real-Time Workshop Embedded Coder provides ERT target
variants that can help you generate optimal code for fixed-point and
floating-point processors. See “Generating Efficient Code via Optimized ERT
Targets” on page 4-20 for information.

4 Advanced Code Generation Features

4-10

Customizing the Target Build Process via the
STF_make_rtw Hook File

The build process lets you supply optional hook files that are executed at
specified points in the code-generation and make process. You can use hook
files to add target-specific actions to the build process.

This section describes an important M-file hook, generically referred to as
STF_make_rtw_hook.m. This hook file implements a function,
STF_make_rtw_hook, that dispatches to a specific action, depending on the
hookMethod argument passed in.

The build process automatically calls STF_make_rtw_hook, passing in the
correct hookMethod argument (as well as other arguments described below).
You need to implement only those hook methods that your build process
requires.

File and Function Naming Conventions. To ensure that STF_make_rtw_hook is called
correctly by the build process, you must ensure that the following conditions
are met:

• The STF_make_rtw_hook.m file is on the MATLAB path.

• The filename is the name of your system target file (STF), appended to the
string _make_rtw_hook.m. For example, if you were generating code via a
custom system target file mytarget.tlc, you would name your
STF_make_rtw_hook.m file to mytarget_make_rtw_hook.m. Likewise, the
hook function implemented within the file should follow the same naming
convention.

• The hook function implemented in the file follows the function prototype
described in the next section.

STF_make_rtw_hook.m Function Prototype and Arguments
The function prototype for STF_make_rtw_hook is

function STF_make_rtw_hook(hookMethod, modelName, rtwRoot, templateMakefile,
buildOpts, buildArgs)

Customizing the Target Build Process via the STF_make_rtw Hook File

4-11

The arguments are defined as:

• hookMethod: String specifying the stage of build process from which the
STF_make_rtw_hook function is called. The flowchart below summarizes the
build process, highlighting the hook points. Valid values for hookMethod are
'entry', 'before_tlc', 'before_make', and 'exit'. The
STF_make_rtw_hook function dispatches to the relevant code via a switch
statement.

Figure 4-1: Build Process Flowchart (Hook Points Highlighted)

• rtwRoot: Reserved.

Start RTWGEN

RTW validation

STF 'entry' hook

Create build directory

STF 'before_tlc' hook

Generate code

STF 'before_make' hook

Make

STF 'exit' hook

Inputs: modelName, buildArgs

Inputs: buildOpts,templateMakefile

End RTWGEN

4 Advanced Code Generation Features

4-12

• modelName: String specifying the name of the model. Valid at all stages of the
build process.

• templateMakefile: Name of template makefile.

• buildOpts: A MATLAB structure containing the fields described in the list
below. Valid for the 'before_make', and 'exit'stages only. The buildOpts
fields are

- modules: Character array specifying a list of generated C files, such as
model.c, model_data.c, etc.

- codeFormat: Character array containing code format specified for the
target. (ERT-based targets must use the 'Embedded-C' code format.)

- noninlinedSFcns: Cell array specifying list of noninlined S-functions in
the model.

- compilerEnvVal: String specifying compiler environment variable value
(e.g., C:\Applications\Microsoft Visual)

• buildArgs: Character array containing the argument to make_rtw. When
you invoke the build process, buildArgs is copied from the argument string
(if any) following make_rtw in the Make command field of the Real-Time
Workshop Target configuration options.

Customizing the Target Build Process via the STF_make_rtw Hook File

4-13

The make arguments from the Make command field in the figure above, for
example, generate the following:

% make -f untitled.mk VAR1=0 VAR2=4

Applications for STF_make_rtw_hook.m
An enumeration of all possible uses for STF_make_rtw_hook.m is beyond the
scope of this document. We can, however, suggest some ways in which you
might apply the available hooks.

In general, you can use the 'entry' hook to initialize the build process before
any code is generated. One application for the 'entry' hook is to
auto-configure a model, as described in “Auto-Configuring Models for Code
Generation” on page 4-15.

The other hook points, 'before_tlc', 'before_make', and 'exit', are useful
for interfacing with external tool chains, source control tools, and other
environment tools.

For example, you could use the STF_make_rtw_hook.m file at any stage after
'entry' to obtain the path to the build directory. At the 'exit' stage, you could
then locate generated code files within the build directory and check them into
your version control system.

Note that the build process temporarily changes the MATLAB working
directory to the build directory for stages 'before_make' and 'exit'. Your
STF_make_rtw_hook.m file should not make incorrect assumptions about the
location of the build directory. You can obtain the path to the build directory
anytime after the 'entry' stage using this function:

rtwprivate('rtwattic','getBuildDir')

rtwprivate returns the build directory pathname as a string.

Using STF_make_rtw_hook.m for Your Build Procedure
To create a custom STF_make_rtw_hook hook file for your build procedure, copy
and edit the example ert_make_rtw_hook.m file (located in the
matlabroot\toolbox\rtw\targets\ecoder directory) as follows:

1 Copy ert_make_rtw_hook.m to a directory in the MATLAB path, and
rename it in accordance with the naming conventions described in “File and

4 Advanced Code Generation Features

4-14

Function Naming Conventions” on page 4-10. For example, to use it with the
GRT target grt.tlc, rename it to grt_make_rtw_hook.m

2 Rename the ert_make_rtw_hook function within the file to match the
filename.

3 Implement the hooks that you require by adding code to the appropriate case
statements within the switch hookMethod statement. See
“Auto-Configuring Models for Code Generation” on page 4-15 for an
example.

Auto-Configuring Models for Code Generation

4-15

Auto-Configuring Models for Code Generation
Traditionally, model parameters are configured manually prior to code
generation. It is now possible to automate the configuration of all (or selected)
model parameters during the code generation process. Auto-configuration is
performed at the 'entry' hook point of the STF_make_rtw_hook.m hook file.
Therefore, auto-configuration becomes a function of the target that invokes the
hook file. By automatically configuring a model in this way, you can avoid
manually configuring models. This saves time and eliminates potential errors.
Note that you can direct the automatic configuration process to save existing
model settings before code generation and restore them afterwards, so that the
user’s manually chosen options are not disturbed.

The uset_param and uget_param Utilities
Simulink provides two M-file utilities, uset_param and uget_param. You can
use these utilities in conjunction with the STF_make_rtw_hook.m hook file, to
automate the configuration of a model during the code generation process.
These utilities let you configure all code-generation options relevant to
Simulink, Stateflow, Real-Time Workshop, and Real-Time Workshop
Embedded Coder.

uset_param
The uset_param utility can be used to assign values to model parameters, to
backup and restore model settings, and to display information about model
options.

To assign an individual model parameter value, pass in the model name and a
parameter name/parameter value pair, as in the following examples:

uset_param('model_name', 'SolverMode', 'Auto')
uset_param('model_name', 'GenerateSampleERTMain', 'on')

You can also assign multiple parameter name/parameter value pairs, as in the
following example:

uset_param('model_name', 'SolverMode', 'Auto', 'RTWInlineParameters', 'off')

Note that the parameter names used by the uset_param function are not
always the same as the model parameter labels seen on the Simulation

4 Advanced Code Generation Features

4-16

Parameters dialog. To view a table of all model options and their legal names
and values in the MATLAB Help browser, type the following command.

uset_param('model_name','help')

This option is provided to help you determine correct parameter
name/parameter value pairs. The Description column of the table gives the
parameter label as displayed in the Simulation Parameters dialog. The
External Name column of the table gives the corresponding name you can pass
in to uset_param. For parameters that have an enumerated set of values, see
the External Valid value group column for legal values.

For example code illustrating correct use of parameter name/parameter value
pairs with uset_param, see
matlabroot\toolbox\rtw\targets\ecoder\ert_config_opt.m.

Preservation of Model Settings. Typically, it is desirable to back up model settings
before auto-configuration and restore them afterwards. To back up model
settings, pass in the model name and the string 'BackupSettings'.

uset_param('model_name', 'BackupSettings')

This creates a recovery (undo) point from which settings can be restored.
Settings should be backed up during the 'entry' hook.

To restore settings from the most recent recovery point, pass in the model name
and the string 'RestoreSettings'.

uset_param('model_name', 'RestoreSettings')

Settings should be restored during the 'exit' hook.

See “Automatic Model Configuration Using ert_make_rtw_hook” on page 4-17
for a code example demonstrating correct preservation of model settings.

Auto-Configuring Models for Code Generation

4-17

uget_param
The uget_param utility can be used to obtain the value of a model parameter.

To get the value of a model parameter, pass in the model name and the
parameter name, for example:

uget_param('ecdemo', 'SolverMode')

ans =

Auto

Automatic Model Configuration Using
ert_make_rtw_hook
As an example of automatic model configuration, we will consider the example
hook file, ert_make_rtw_hook.m. This file invokes the function
ert_auto_configuration, which in turn calls a lower level function that sets
all parameters of the model using the uset_param utility.

While reading this section, refer to the following files, (located in
matlabroot\toolbox\rtw\targets\ecoder):

• ert_make_rtw_hook.m
• ert_auto_configuration.m
• ert_config_opt.m

The following code excerpt from ert_make_rtw_hook.m shows how
ert_auto_configuration is called from the 'entry' stage of the build process. At
the 'exit' stage, the previous model settings are restored. Note that the
ert_auto_configuration call is made within a try/catch block so that in the
event of a build error, the model settings will also be restored.

4 Advanced Code Generation Features

4-18

switch hookMethod
 case 'entry'
 % Called at start of code generation process (before anything happens.)
 % Valid arguments at this stage are hookMethod, modelName, and buildArgs.

 option = LocalParseArgList(buildArgs);

 if ~strcmp(option,'none')

 % Error if ert_rtw_info_hook not present
 if exist('ert_rtw_info_hook') ~= 2
 missing_ert_rtw_info_hook(modelName);
 end

 % Auto configure RTW options
 uset_param(modelName,'BackupSettings');

 try
 ert_auto_configuration(modelName,option);
 catch
 uset_param(modelName,'RestoreSettings');
 error(lasterr)
 end

 end
...
case 'exit'
 % Called at the end of the RTW build process. All arguments are valid
 % at this stage.

 % Uncomment if you don't want to dirty the model with auto cofiguration.
 if ~strcmp(LocalParseArgList(buildArgs),'none')
 uset_param(modelName,'RestoreSettings');

end

The ert_auto_configuration function has two string arguments, which are
passed down to the lower-level code:

• model is the name of the model.

• option is a string that is extracted from the buildArgs argument to
ert_make_rtw_hook.m (see “STF_make_rtw_hook.m Function Prototype and
Arguments” on page 4-10). The option argument specifies a configuration
mode. In the example implementation, the configuration mode is either
'optimized_floating_point' or 'optimized_fixed_point'. The following
code excerpt from ert_config_opt.m shows a typical use of this argument to
make a configuration decision:

Auto-Configuring Models for Code Generation

4-19

if strcmp(configMode,'optimized_floating_point')
uset_param(model,'GenFloatMathFcnCalls','ISO_C');
uset_param(model,'PurelyIntegerCode','off');

elseif strcmp(configMode,'optimized_fixed_point')
uset_param(model,'PurelyIntegerCode','on');

end

Using the Auto-Configuration Utilities
To use the auto-configuration utilities during your make process as described
above:

1 Set up the example ert_make_rtw_hook.m as your STF_make_rtw_hook file
(see “Customizing the Target Build Process via the STF_make_rtw Hook
File” on page 4-10).

2 Reconfigure the uset_param calls within ert_config_opt.m to suit your
application needs.

4 Advanced Code Generation Features

4-20

Generating Efficient Code via Optimized ERT Targets
As described in “Specifying Target-Specific Information for Code Generation”
on page 4-6, your target should supply a hook file to specify target-specific
properties such as word sizes for standard C data types.

To make it easier for you to customize a hook file that is optimized for your
target hardware, Real-Time Workshop Embedded Coder provides three
variants of the ERT target:

• RTW Embedded Coder (no auto configuration): This is the default ERT
target. The behavior of this target is unchanged. If no STF_rtw_info_hook
hook file is found, it uses host- based default values as described above.

• RTW Embedded Coder (auto configures for optimized fixed-point
code): To optimize for fixed-point code generation, select this target. During
the build process, this target searches the MATLAB path for a hook file,
STF_rtw_info_hook.m. If no hook file is found the target displays a warning
message and opens an example hook file (ert_rtw_info_hook.m) into the
MATLAB editor. You should customize the target word lengths and C
language implementation behavior parameters in this file and save this file,
as instructed by the warning message. (See “Using the Optimized ERT
Targets” on page 4-21.)

Note that this target passes in the command optimized_fixed_point=1 to
the build process, via the RTW make command field of the Simulation
Parameters dialog box. This in turn invokes the M-file ert_config_opt.m,
which auto-configures the model. You can, if desired, customize the option
settings in this file. The auto-configuration process overrides the model
settings, informing the user via a message in the MATLAB command
window.

• RTW Embedded Coder (auto configures for optimized floating-point
code): To optimize for floating-point code generation, select this target.
During the build process, this target searches the MATLAB path for a hook
file, STF_rtw_info_hook.m. If no hook file is found the target displays a
warning message and opens an example hook file (ert_rtw_info_hook.m)
into the MATLAB editor. You should customize the target word lengths and
C language implementation behavior parameters in this file and save this

Generating Efficient Code via Optimized ERT Targets

4-21

file, as instructed by the warning message. (See “Using the Optimized ERT
Targets” on page 4-21.)

Note that this target passes in the command optimized_floating_point=1
to the build process, via the RTW make command field of the Simulation
Parameters dialog box. This in turn invokes the M-file ert_config_opt.m,
which auto-configures the model. You can, if desired, customize the option
settings in this file. The auto-configuration process overrides the model
settings, informing the user via a message in the MATLAB command
window.

Using the Optimized ERT Targets
To use one of the optimized versions of the ERT targets:

1 Open the System Target File Browser. This figure shows the browser with
the RTW Embedded Coder (auto configures for optimized fixed-point
code) target selected.

2 Select the desired target.

3 Save the model.

4 Advanced Code Generation Features

4-22

4 Initiate the build process.

5 If you have not provided a STF_rtw_info_hook hook file, an error message
similar to the one below will be displayed. This message indicates the name
and location of the example hook file for you to customize. At the same time,
the MATLAB editor automatically opens the example hook file.

6 Edit the example hook file in the MATLAB editor (see “Setting Up
STF_rtw_info_hook.m” on page 4-7). Change the assignment statements
that set the fields of the value structure (value.CharNumBits,
value.ShiftRightIntArith etc.) to use appropriate values for your target
processor.

7 Save the customized hook file to a directory of your choice. If you are using
or setting up a custom target, use the location and naming conventions
described in “File and Function Naming Conventions” on page 4-7.

8 If the directory containing the customized hook file is not on the MATLAB
path, add it to the MATLAB path and save the path for use in future
settings.

Generating Efficient Code via Optimized ERT Targets

4-23

9 The next time code generation is initiated, the build process will use your
custom hook file. The auto-configuration process reports this, in a message
similar to the following:

*** Auto configuring 'optimized_fixed_point' for model 'ecdemo' as specified by:
D:\test_install\r13sp1_bash\toolbox\rtw\targets\ecoder\ert_config_opt.m
*** Overwriting model settings if they do not yield optimized code.

4 Advanced Code Generation Features

4-24

Generating Custom Code File Banners
The ERT target now lets you specify custom file banners to be inserted into the
code files generated by the ERT target. File banners are comment sections in
the header and trailer portions of a generated file. You can use these banners
to add a company copyright statement, specify a special version symbol for your
configuration management system, remove time stamps, and for many other
purposes.

File banners are specified by using banner templates. Banner templates are
TLC files that can be invoked during the generation of source code files. You do
not need to be familiar with TLC programming to use banner templates.
Generally, you simply need to modify example banner templates supplied with
the ERT target.

File banner generation is supported by the ERT code templates category of the
Real-Time Workshop pane of the Simulation Parameters dialog (shown in
the figure below.

The options related to file banner generation are

• Source file (.c) banner template: Banner template file to use when
generating source (.c) files. This file must be located on the TLC path.

• Header file (.h) banner template: Banner template file to use when
generating header (.h) files. This file must be located on the TLC path. This

Generating Custom Code File Banners

4-25

can be the same template specified in Source file (.c) banner template, in
which case identical banners will be generated in source and header files.

By default, the banner template for both source and header files is
matlabroot/rtw/c/tlc/mw/example_banner.tlc.

Creating a Custom File Banner Template
The recommended procedure for creating a custom file banner template is

• Copy the default banner template
(matlabroot/rtw/c/tlc/mw/example_banner.tlc) to a directory that is not
inside the MATLAB directory structure (typically, to a folder under your
target’s root directory). Note that this directory must be on the TLC path.
Therefore, it is good practice to locate the banner template in the same
directory as your system target file, which is guarateed to be on the TLC
path.

• Rename the template file.

• Edit and customize the template file as needed (See “Customizing a File
Banner Template” on page 4-25).

• In the ERT code templates category of the Real-Time Workshop pane,
enter the template filename in the Source file (.c) banner template and/or
Header file (.h) banner template field.

• Click Apply and save your model.

• Generate code. The generated source and/or header files will contain the
banners specified by the template(s).

Customizing a File Banner Template
A file banner template consists of three sections:

• Header (optional): TLC code to generate a header banner. The header banner
precedes any C code generated by the model. If the header section is omitted,
no header banner is generated. The following is the header section of the
default file banner template
(matlabroot/rtw/c/tlc/mw/example_banner.tlc):

4 Advanced Code Generation Features

4-26

%% Custom file banner (optional)
%%
/*
 * File: %<FileName>
 *
 * Real-Time Workshop code generated for Simulink model %<ModelName>.
 *
 * Model version : %<ModelVersion>
 * Real-Time Workshop file version : %<RTWFileVersion>
 * Real-Time Workshop file generated on : %<RTWFileGeneratedOn>
 * TLC version : %<TLCVersion>
 * C source code generated on : %<SourceGeneratedOn>
 *
 * You can customize this banner by specifying a different banner template.
 */

• Code insertion section (required): This section must not be omitted. It
contains a %include statement that performs the actual generation of C
source or header code for the file. The following is the code insertion section
of the default file banner template
(matlabroot/rtw/c/tlc/mw/example_banner.tlc)
%% Insert generated code (required)
%%
%include "rtwec_code.tlc"

• Trailer (optional): TLC code to generate a trailer banner. The trailer banner
follows any C code generated by the model. If the trailer section is omitted,
no trailer banner is generated. The following is the trailer section of the
default file banner template
(matlabroot/rtw/c/tlc/mw/example_banner.tlc):
%% Custom file trailer (optional)
%%
/* File trailer for Real-Time Workshop generated code.
 *
 * You can customize this file trailer by specifying a different banner template.
 *
 * [EOF]
 */

The header and trailer sections typically use TLC variables (such as
%<ModelVersion>) as tokens. During code generation, tokens are replaced with
values in the generated code. example_banner.tlc includes a list of available
tokens (e.g., FileName, FileType, etc.).

Generating Custom Code File Banners

4-27

The following code excerpt shows a modified banner section based on
example_banner.tlc. This template inserts a copyright notice into the banner.

%%%
%% Custom file banner (optional)
%%
/*
 * File: %<FileName>
 * ---
 * Copyright 2003 ABC Corporation, Inc.
 * ---
 *
 * Real-Time Workshop code generated for Simulink model %<ModelName>.
 *
 * Model version : %<ModelVersion>
 * Real-Time Workshop file version : %<RTWFileVersion>
 * Real-Time Workshop file generated on : %<RTWFileGeneratedOn>
 * TLC version : %<TLCVersion>
 * C source code generated on : %<SourceGeneratedOn>
 *
 * This banner was generated by copyright_banner.tlc.
 */

%%%

The following code excerpt shows an actual file banner generated using the
above template.

/*
 * File: ecdemo.c
 * ---
 * Copyright 2003 ABC Corporation, Inc.
 * ---
 *
 * Real-Time Workshop code generated for Simulink model ecdemo.mdl.
 *
 * Model version : 1.190
 * Real-Time Workshop file version : 5.1 $Date: 2003/08/08 18:37:24 $
 * Real-Time Workshop file generated on : Fri Sep 26 16:34:26 2003
 * TLC version : 5.1 (Aug 8 2003)
 * C source code generated on : Fri Sep 26 16:34:26 2003
 *
 * This banner was generated by copyright_banner.tlc.
 */

4 Advanced Code Generation Features

4-28

Custom File Processing Templates
The ERT target now supports use of custom file processing templates (CFP
template) during code generation. A CFP template is a TLC file that calls a
high-level API, referred to as the code template API. The code template API
simplifies generation of custom source code by letting you

• Generate virtually any type of source (.c) or header (.h) file. A CFP template
can emit code to the standard generated model files (e.g., model.c, model.h,
etc.) or generate files that are independent of model code.

• Organize generated code into sections (such as includes, typedefs, functions,
and more). Your CFP template can emit code (e.g., functions), directives
(such as #define or #include statements), or comments into each section as
required.

• Generate code to call model functions such as model_initialize,
model_step, etc.

• Generate code to read and write model inputs and outputs.

• Generate a main program module.

• Obtain information about the model and the files being generated from it.

Note that, although use of CFP templates simplifies custom code generation,
the feature still requires some understanding of TLC programming. See the
Target Language Ccompiler Reference Guide documentation to learn the
basics of TLC.

The files provided to support custom file processing are located in the directory
matlabroot/rtw/c/tlc/mw. The key files are

• ertcodetemplatelib.tlc: A TLC function library that implements the code
template API. ertcodetemplatelib.tlc also provides the comprehensive
documentation of the API in the comments headers preceding each function.

• example_file_process.tlc: An example CFP template, which you should
use as the starting point for creating your own CFP templates. Guidelines
and examples for creating a CFP template are provided in “Generating
Source and Header Files with a CFP Template” on page 4-31 below.

• TLC files supporting generation of single-rate and multi-rate main program
modules (see “Generating a Main Program Module” on page 4-36).

Custom File Processing Templates

4-29

Once you have created a CFP template, you must integrate it into the code
generation process, using the File customization template option. This option
is located in the ERT code templates category of the Real-Time Workshop
pane of the Simulation Parameters dialog (shown in the figure below).

The File customization template option specifies the name of a CFP template
file to use when generating code files. This file must be located on the TLC
path. The default CFP template is example_file_process.tlc.

Template Structure
A CFP template imposes a simple structure on the code generation process.
The template partitions the code generated for each file into a number of
sections. These sections are summarized in Table 4-1.

Code for each section is assembled in buffers and then emitted, in the order
listed, to the file being generated.

To generate a file section, your CFP template must first assemble the code to
be generated into a buffer. Then, to emit the section, your template calls the
TLC function

LibSetSourceFileSection(fileH, section,tmpBuf)

where

• fileH is a file reference to a file being generated.

4 Advanced Code Generation Features

4-30

• section is the code section to which code is to be emitted. section must be
one of the section names listed in Table 4-1.

• tmpBuf is the buffer containing the code to be emitted.

There is no requirement to generate all of these sections. Your template need
only generate the sections you require in a particular file.

Note that no legality or syntax checking is performed on the custom code within
each section.

See “Generating Source and Header Files with a CFP Template” on page 4–31
for typical usage examples.

Table 4-1: Code Sections Emitted by CFP Templates

Section Name Description

Banner File banner (comment) at the top of the file

Includes #include directives section

Defines #define directives section

IntrinsicTypes Intrinsic typedef section. Intrinsic types are those that depend only
on intrinsic C types.

PrimitiveTypedefs Primitive typedef section. Primitive typedefs are those that depend
only on intrinsic C types and on any typedefs previously defined in the
IntrinsicTypes section.

UserTop Any type of code can be placed in this section. You can place code that
has dependencies on the previous sections here.

Typedefs typedef section. Typedefs can depend on any previously defined type

Enums Enumerated types section

Definitions Place data definitions here (e.g., double x = 3.0;)

ExternData (reserved) Real-Time Workshop extern data

ExternFcns (reserved) Real-Time Workshop extern functions

Custom File Processing Templates

4-31

Generating Source and Header Files with a
CFP Template
This section walks you through the process of generating a simple source (.c)
and header (.h) file using the example CFP template. Then, it examines the
template and the code generated by the template.

The example CFP template, example_file_process.tlc, demonstrates some
of the capabilities of the code template API, including

• Generation of simple source (.c) and header (.h) files.

• Use of buffers to generate file sections for includes, functions, etc.

• Generation of includes, defines etc. into the standard generated files (e.g.,
model.h)

• Generation of a main program module.

Generating Code with a CFP Template
This section sets up a CFP template and configures a model to use the template
in code generation. The template generates (in addition to the standard model
files) a C source file (timestwo.c) and a header file (timestwo.h).

We suggest that you follow the steps below to become acquainted with the use
of CFP templates:

FcnPrototypes (reserved) Real-Time Workshop function prototypes

Declarations Data declarations (e.g., extern double x;)

Functions C functions

CompilerErrors #warning directives

CompilerWarnings #error directives

Documentation Documentation (comment) section

UserBottom Any code can be placed in this section.

Table 4-1: Code Sections Emitted by CFP Templates

Section Name Description

4 Advanced Code Generation Features

4-32

1 Copy the example CFP template,
matlabroot/rtw/c/tlc/mw/example_file_process.tlc, to a directory of
your choice. This directory should be located outside the MATLAB directory
structure (i.e., it should not be under matlabroot.) Note that this directory
must be on the TLC path. Therefore, it is good practice to locate the CFP
template in the same directory as your system target file, which is guarateed
to be on the TLC path.

2 Rename the copied example_file_process.tlc to
test_example_file_process.tlc.

3 Open test_example_file_process.tlc into the MATLAB editor.

4 Uncomment the following line:

%%assign ERTCustomFileTest = TLC_TRUE

It should now read:

%assign ERTCustomFileTest = TLC_TRUE

If ERTCustomFileTest is not assigned as shown, the CFP template will be
ignored in code generation.

5 Save your changes to the file. Keep test_example_file_process.tlc open,
so you can refer to it later.

6 Open the ecdemo model.

7 Open the Simulation Parameters dialog and select the Real-Time
Workshop tab. Select ERT code templates from the Category menu.

Custom File Processing Templates

4-33

8 Configure the options as shown above. The
test_example_file_process.tlc file, which you previously edited, is
specified as the CFP template.

9 Click Apply.

10 Click Generate code. During code generation, you will notice the following
message on the MATLAB command window:

Warning: Overriding example ert_main.c!

This message is displayed because test_example_file_process.tlc
generates the main program module, overriding the default action of the
ERT target. This will be explained in greater detail below.

11 The ecdemo model is configured to generate an HTML code generation
report. After code generation completes, view the report. Notice that the
Generated Source Files list contains the files timestwo.c, timestwo.h,
and ert_main.c. These files were generated by the CFP template. The next
section examines the template to learn how this was done.

12 Keep the model, the code generation report, and the
test_example_file_process.tlc file open so you can refer to them in the
next section.

4 Advanced Code Generation Features

4-34

Analysis of the Example CFP Template and Generated Code
This section examines excerpts from test_example_file_process.tlc and
some of the code it generates. It will be helpful for you to refer to the comments
in ertcodetemplatelib.tlc while reading the discussion below.

Generating Code Files. Source (.c) and header (.h) files are created by calling
LibCreateSourceFile, as in the following excerpts:

%assign hFile = LibCreateSourceFile("Header", "Custom", "timestwo")
...
%assign cFile = LibCreateSourceFile("Source", "Custom", "timestwo")

Subsequent code refers to the files by the file reference returned from
LibCreateSourceFile.

File Sections and Buffers. The code template API lets you partition the code
generated to each file into sections, tagged as Definitions,Includes,
Functions, Banner, etc. You can append code to each section as many times as
required. This technique gives you a great deal of flexibility in the formatting
of your custom code files.

The available file sections, and the order in which they are emitted to the
generated file, are summarized in Table 4-1, Code Sections Emitted by CFP
Templates, on page 4-30.

For each section of a generated file, use %openfile and %closefile to store the
text for that section in temporary buffers. Then, to write (append) the buffer
contents to a file section, call LibSetSourceFileSection, passing in the
desired section tag and file reference. For example, the following code uses two
buffers (tmwtypesBuf and tmpBuf) to generate two sections (tagged Includes
and Functions) of the source file timestwo.c (referenced as cFile):

Custom File Processing Templates

4-35

%openfile tmwtypesBuf

 #include "tmwtypes.h"

 %closefile tmwtypesBuf

 %<LibSetSourceFileSection(cFile,"Includes",tmwtypesBuf)>

 %openfile tmpBuf

 /* Times two function */
 real_T timestwofcn(real_T input) {
 return (input * 2.0);
 }

 %closefile tmpBuf

 %<LibSetSourceFileSection(cFile,"Functions",tmpBuf)>

These two sections generate the entire timestwo.c file:

#include "tmwtypes.h"

/* Times two function */
real_T timestwofcn(real_T input) {
 return (input * 2.0);
}

Adding Code to Standard Generated Files. The timestwo.c file generated in the
previous example was independent of the standard code files generated from a
model (e.g., model.c, model.h, etc.). You can use similar techniques to generate
custom code within the model files. The code template API includes functions
to obtain the names of the standard models files and other model-related
information. The following excerpt calls LibGetMdlPubHdrBaseName to obtain
the correct name for the model.h file. It then obtains a file reference and
generates a definition in the Defines section of model.h:

4 Advanced Code Generation Features

4-36

%% Add a #define to the model's public header file model.h

 %assign pubName = LibGetMdlPubHdrBaseName()
 %assign modelH = LibCreateSourceFile("Header", "Simulink", pubName)

 %openfile tmpBuf

 #define ACCELERATION 9.81

 %closefile tmpBuf

 %<LibSetSourceFileSection(modelH,"Defines",tmpBuf)>

Examine the generated ecdemo.h file to see the generated #define directive.

Generating a Main Program Module. Normally, the ERT target follows the
Generate an example main program and Target operating system options
to determine how to generate an ert_main.c module (if any). You can use a
CFP template to override the normal behavior and generate a main program
module customized for your target environment.

To support generation of main program modules, two TLC files are provided:

• bareboard_srmain.tlc: TLC code to generate an example single-rate main
program module for a bareboard target environment. Code is generated by a
single TLC function, FcnSingleTaskingMain.

• bareboard_mrmain.tlc: TLC code to generate a multi-rate main program
module for a bareboard target environment. Code is generated by a single
TLC function, FcnMultiTaskingMain.

In the example CFP template, the following code generates either a single- or
multi-tasking ert_main.c module. The logic depnds on information obtained
from the code template API calls LibIsSingleRateModel and
LibIsSingleTasking:

%% Create a simple main. Files are located in MATLAB/rtw/c/tlc/mw.

 %if LibIsSingleRateModel() || LibIsSingleTasking()
 %include "bareboard_srmain.tlc"
 %<FcnSingleTaskingMain()>
 %else
 %include "bareboard_mrmain.tlc"
 %<FcnMultiTaskingMain()>
 %endif

Custom File Processing Templates

4-37

Note that bareboard_srmain.tlc and bareboard_mrmain.tlc use the code
template API to generate ert_main.c.

Creation of a main program for your target environment requires some
customization; for example, in a bareboard environment you will need to attach
rt_OneStep to a timer interrupt. It is expected that you will customize either
the generated code, the generating TLC code, or both. See “Guidelines for
Modifying the Main Program” on page 2–11 and ““Guidelines for Modifying
rt_OneStep” on page 2–16 for further information.

Code Template API Summary
Table 4-2 summarizes the code template API. See the source code in
ertcodetemplatelib.tlc for detailed information on the arguments, return
values, and operation of these calls.

Table 4-2: Code Template API Functions

Function Description

LibGetNumSourceFiles Returns the number of created source files (.c and .h).

LibGetSourceFileTag Returns <filename>_h and <filename>_c for header and
source files, respectively where filename is the name of
the model file.

LibCreateSourceFile Creates a new C file and returns its reference. If the file
already exists, simply returns its reference.

LibGetSourceFileFromIdx Returns a model file reference based on its index. This is
useful for a common operation on all files, such as to set
the leading file banner of all files.

LibSetSourceFileSection Adds to the contents of a specified section within a
specified file (see also “Template Structure” on page 4-29).

LibGetSourceFileSection Retrieves the contents of a file. See the code for
LibSetSourceFileSection for list of valid sections.

LibIndentSourceFile Indents a file with the c_indent utility of Real-Time
Workshop (from within the TLC environment).

4 Advanced Code Generation Features

4-38

LibCallModelInitialize Returns code for calling the model's model_initialize
function (valid for ERT only).

LibCallModelStep Returns code for calling the model's model_step function
(valid for ERT only).

LibCallModelTerminate Returns code for calling the model's model_terminate
function (valid for ERT only).

LibCallSetEventForThisBaseStep Returns code for calling the model's set events function
(valid for ERT only).

LibWriteModelData Returns data for the model (valid for ERT only).

LibSetRTModelErrorStatus Returns the code to set the model error status.

LibGetRTModelErrorStatus Returns the code to get the model error status.

LibIsSingleRateModel Returns true if model is single rate and false otherwise.

LibGetModelName Returns name of the model (no extension).

LibGetMdlSrcBaseName Returns the name of model's main source (e.g., model.c)
file.

LibGetMdlPubHdrBaseName Returns the name of model's public header (e.g.,
model.h).

LibGetMdlPrvHdrBaseName Returns the name of the model's private header (e.g.,
model_private.h) file.

LibIsSingleTasking Returns true if the model is configured for singletasking
execution.

LibWriteModelInput Returns the code to write to a particular root input (i.e., a
model inport block). (valid for ERT only).

LibWriteModelOutput Returns the code to write to a particular root output (i.e.,
a model outport block). (valid for ERT only).

Table 4-2: Code Template API Functions (Continued)

Function Description

Custom File Processing Templates

4-39

LibWriteModelInputs Returns the code to write to root inputs (i.e., all model
inport blocks). (valid for ERT only)

LibWriteModelOutputs Returns the code to write to root outputs (i.e., all model
outport blocks). (valid for ERT only).

LibNumDiscreteSampleTimes Returns the number of discrete sample times in the
model.

Table 4-2: Code Template API Functions (Continued)

Function Description

4 Advanced Code Generation Features

4-40

5

Custom Storage Classes

This section contains the following topics:

Introduction to Custom Storage
Classes (p. 5-2)

Overview of how the Real-Time Workshop Embedded
Coder’s custom storage classes extend your control over
the representation of data in an embedded algorithm.

Properties of Predefined Custom
Storage Classes (p. 5-4)

Summary of the attributes of custom storage classes.

Class-Specific Storage Class Attributes
(p. 5-8)

Additional attributes that are specific to certain classes.

Other Custom Storage Classes (p. 5-10) Custom storage classes that have been provided for
special purposes.

Assigning a Custom Storage Class to
Data (p. 5-11)

How to assign a custom storage class to a Simulink data
object either from the Simulink Data Explorer, or from
the MATLAB command prompt

Code Generation with Custom Storage
Classes (p. 5-17)

Procedure for generating code with data objects that have
a custom storage class.

Sample Code Excerpts (p. 5-19) Generated code examples from an example model with
block parameters and signals that are associated with
data objects having predefined custom storage classes.

5 Custom Storage Classes

5-2

Introduction to Custom Storage Classes
In Real-Time Workshop, the storage class specification of a signal, tunable
parameter, block state, or data object specifies how that entity is declared,
stored, and represented in generated code.

Note that in the context of Real-Time Workshop, the term “storage class” is not
synonymous with the term “storage class specifier,” as used in the C language.

Real-Time Workshop defines built-in storage classes for use with all targets.
Examples of built-in storage classes are Auto, ExportedGlobal, and
ImportedExtern. These storage classes provide limited control over the form of
the code generated for references to the data. For example, data of storage class
Auto is typically declared and accessed as an element of a structure, while data
of storage class ExportedGlobal is declared and accessed as unstructured
global variables. Built-in storage classes are discussed in detail in the “Code
Generation and the Build Process” chapter of the Real-Time Workshop
documentation.

The built-in storage classes are suitable for a simulation or rapid prototyping
environment, but embedded system designers often require greater control
over the representation of data. For example, you may need to

• Conserve memory by storing Boolean data in bit fields.

• Integrate the code generated by Real Time Workshop with legacy software
whose interfaces cannot be modified.

• Employ certain constructs to comply with your organization’s software
engineering guidelines for safety-critical code.

The Real-Time Workshop Embedded Coder’s custom storage classes provide
extended control over the constructs required to represent data in an embedded
algorithm. A custom storage class is defined by a set of Target Language
Compiler (TLC) instructions that the Real Time Workshop uses when
generating code for each type of reference to data of that class. These
instructions tell the Real Time Workshop exactly how to define, declare, and
access the data. Since the instructions are created by the user, the variations
in the code generated are unlimited.

The Real Time Workshop Embedded Coder includes a set of predefined custom
storage classes designed to be useful in embedded systems development. You
can use these classes without any TLC programming. The sections that follow

Introduction to Custom Storage Classes

5-3

explain the custom storage classes provided and supported by The MathWorks
for use with the Real Time Workshop Embedded Coder.

The TLC code for each predefined storage class is found in
matlabroot/toolbox/simulink/simulink/@Simulink/tlc. If you want to
create your own custom storage classes, you can use this code as an example.
However, the creation of new classes is outside the scope of this document.

5 Custom Storage Classes

5-4

Properties of Predefined Custom Storage Classes
The Real-Time Workshop Embedded Coder defines two classes of custom data
objects:

• Simulink.CustomParameter: This class is a subclass of
Simulink.Parameter. Objects of this class have expanded RTWInfo
properties. The properties of Simulink.CustomParameter objects are:

- RTWInfo.StorageClass. This property should always be set to the default
value, Custom.

- RTWInfo.CustomStorageClass. This property takes on one of the
enumerated values described in “Predefined Custom Storage Class
Summaries” on page 5-4. This property controls the generated storage
declaration and code for the object.

- RTWInfo.CustomAttributes. This property defines additional attributes
that are exclusive to the class, as described in “Class-Specific Storage
Class Attributes” on page 5-8.

- Value. This property is the numeric value of the object, used as an initial
(or inlined) parameter value in generated code.

• Simulink.CustomSignal: This class is a subclass of Simulink.Signal.
Objects of this class have expanded RTWInfo properties. The properties of
Simulink.CustomSignal objects are:

- RTWInfo.StorageClass. This property should always be set to the default
value, Custom.

- RTWInfo.CustomStorageClass. This property takes on one of the
enumerated values described in “Predefined Custom Storage Class
Summaries” below. This property controls the generated storage
declaration and code for the object.

- RTWInfo.CustomAttributes. This optional property defines additional
attributes that are exclusive to the storage class, as described in
“Class-Specific Storage Class Attributes” on page 5-8.

Predefined Custom Storage Class Summaries
The following tables summarize the predefined custom storage classes. The
entry for each class indicates

Properties of Predefined Custom Storage Classes

5-5

• Name and purpose of the class.

• Whether the class is valid for parameter or signal objects. For example, you
can assign the storage class Const to a parameter object. This storage class
is not valid for signals, however, since signal data (except for the case of
invariant signals) is not constant.

• Whether the class is valid for complex data or nonscalar (wide) data.

• Data types supported by the class.

The first three classes, shown in Table 5-1, insert type qualifiers in the data
declaration.

The second set of three classes, shown in Table 5-2, handles issues of data scope
and file partitioning.

Table 5-1: Const, ConstVolatile, and Volatile Storage Classes

Class
Name

Purpose Parameters Signals Data
Types

Complex Wide

Const Use const
type qualifier
in declaration

Y N any Y Y

ConstVolatile Use
const volatile
type qualifier
in declaration

Y N any Y Y

Volatile Use volatile
type qualifier
in declaration

Y Y any Y Y

5 Custom Storage Classes

5-6

The final three classes, shown in Table 5-3, specify the data structure or
construct used to represent the data.

Table 5-2: ExportToFile, ImportFromFile, and Internal Storage Classes

Class
Name

Purpose Parameters Signals Data
Types

Complex Wide

ExportToFile Generate and include
files, with user-specified
name, containing global
variable declarations and
definitions

Y Y any Y Y

ImportFromFile Include predefined
header files containing
global variable
declarations

Y Y any Y Y

Internal Declare and define global
variables whose scope is
limited to the code
generated by the
Real-Time Workshop

Y Y any Y Y

Table 5-3: BitField, Define, and Struct Storage Classes

Class
Name

Purpose Parameters Signals Data
types

Complex Wide

BitField Embed Boolean data
in a named bit field

Y Y Boolean N N

Properties of Predefined Custom Storage Classes

5-7

Define Represent parameters
with a #define macro

Y N any N N

Struct Embed data in a named
struct to encapsulate
sets of data

Y Y any N Y

Table 5-3: BitField, Define, and Struct Storage Classes (Continued)

Class
Name

Purpose Parameters Signals Data
types

Complex Wide

Table 5-4: Data Access Storage Classes

Class
Name

Purpose Parameters Signals Data
types

Complex Wide

GetSet Read and write data
using access functions.
See “GetSet Custom
Storage Class for Data
Store Memory” on
page 5-10

N Y any N Y

5 Custom Storage Classes

5-8

Class-Specific Storage Class Attributes
Some custom storage classes have attributes that are exclusive to the class.
These attributes are made visible as members of the
RTWInfo.CustomAttributes field. For example, the BitField class has a
BitFieldName attribute (RTWInfo.CustomAttributes.BitFieldName).

Table 5-5 summarizes the storage classes with additional attributes, and the
meaning of those attributes. Attributes marked optional have default values
and may be left unassigned.

Table 5-5: Additional Properties of Custom Storage Classes

Storage Class
Name

Additional Properties Description Optional
(has
default)

ExportToFile FileName String. Defines the name of the
generated header file within which the
global variable declaration should
reside. If unspecified, the declaration is
placed in model_export.h by default.

Y

ImportFromFile FileName String. Defines the name of the
generated header file which to be used
in #include directive.

N

ImportFromFile IncludeDelimeter Enumerated. Defines delimiter used for
filename in the #include directive.
Delimiter is either double quotes (e.g.
#include "vars.h") or angle brackets
(e.g. #include <vars.h>). The default is
quotes.

Y

BitField BitFieldName String. Defines name of bit field in
which data will be embedded; if
unassigned, the name defaults to
rt_BitField.

Y

Class-Specific Storage Class Attributes

5-9

Struct StructName String. Defines name of the struct in
which data will be embedded; if
unassigned, the name defaults to
rt_Struct.

Y

GetSet GetFunction String. Specifies function call to read
data. See “GetSet Custom Storage Class
for Data Store Memory” on page 5-10.

GetSet SetFunction String. Specifies function call to write
data. See “GetSet Custom Storage Class
for Data Store Memory” on page 5-10.

GetSet HeaderFile String. Same as FileName in the
ImportFromFile class.

GetSet IncludeDelimeter Enumerated. Same as
IncludeDelimeter in the
ImportFromFile class.

Table 5-5: Additional Properties of Custom Storage Classes (Continued)

Storage Class
Name

Additional Properties Description Optional
(has
default)

5 Custom Storage Classes

5-10

Other Custom Storage Classes
This section discusses other custom storage classes that have been provided for
special purposes.

GetSet Custom Storage Class
for Data Store Memory
The GetSet custom storage class can only be used for the memory of Data Store
Read and Data Store Write blocks. The properties of the GetSet class are
summarized in Table 5-4 and Table 5-5.

This class supports only signals of noncomplex data types. Its purpose is to
generate code that reads (gets) and writes (sets) data via functions. For
example, if the GetFunction for signal x is specified as "get_x" then the
generated code will call get_x() wherever the value of x is used. If the
SetFunction for signal x is specified as "set_x" then the generated code will
call set_x(value) wherever the value of x is assigned.

For wide signals, an additional index argument is passed, as in

get_x(idx)
set_x(value, idx)

The cscgetsetdemo demo illustrates the use of the GetSet custom storage
class.

Designing Custom Storage Classes
Designing your own custom storage classes is an advanced topic. We have
provided a step-by-step tutorial with the Real-Time Workshop Embedded
Coder demo suite. To view this tutorial, type the following command at the
MATLAB command prompt:

cscdesignintro

Assigning a Custom Storage Class to Data

5-11

Assigning a Custom Storage Class to Data
You can assign a custom storage class to a Simulink data object either from the
Simulink Data Explorer, or from the MATLAB command prompt.

Assigning a Custom Storage Classes via the Simulink Data Explorer
To create a custom parameter or signal object from the Simulink Data
Explorer:

1 Choose Data explorer from the Simulink Tools menu, or type slexplr at
the MATLAB prompt. The Data explorer dialog box appears.

2 In the Objects (left) pane, depress the right mouse button. A pop-up menu
appears. Select New… from the menu, as shown in this figure.

5 Custom Storage Classes

5-12

3 A New Object dialog box is displayed. Select Simulink.CustomParameter
or Simulink.CustomSignal from the Class menu. Enter the name of the
object in the Name field.

In this figure, an object p of class Simulink.CustomParameter is created.

4 Click OK. The object now appears in the Objects pane, and is selected. Its
properties are shown in the Properties (right) pane.

Assigning a Custom Storage Class to Data

5-13

5 To view the properties of the object, open the RTWInfo field by clicking on the
+ button next to the field name. Similarly, open the
RTWInfo.CustomAttributes field to show the class-specific attributes of the
object (if any). This figure shows the initial properties of the
Simulink.CustomParameter object p.

5 Custom Storage Classes

5-14

6 Set the custom storage class of the object, by selecting a value for the object’s
RTWInfo.CustomStorageClass property from the CustomStorageClass
menu. In this figure, the custom storage class of the object p is being changed
from BitField to Define.

Assigning a Custom Storage Class to Data

5-15

7 This figure shows the object properties after the custom storage class
property of p is set to Define. Notice that the BitFieldName attribute is no
longer displayed, since that attribute applies only to objects whose custom
storage class is BitField.

8 Make sure that the RTWInfo.StorageClass property is set to Custom. If this
property is not set to Custom, the custom storage properties are ignored.

9 Click Close to dismiss the Simulink Data Explorer.

Assigning a Custom Storage Class via the MATLAB Command Line
You can create custom parameter or signal objects from the MATLAB
command line. For example, the following commands create a custom
parameter object p and a custom signal object s:

p = Simulink.CustomParameter
s = Simulink.CustomSignal

5 Custom Storage Classes

5-16

After creating the object, set the RTWInfo.CustomStorageClass and (optional)
RTWInfo.CustomAttributes fields. For example, the following commands sets
these fields for the custom parameter object p:

p.RTWInfo.CustomStorageClass = 'ExportToFile'
p.RTWInfo.CustomAttributes.FileName = 'testfile.h'

Finally, make sure that the RTWInfo.StorageClass property is set to its
default value, Custom. If you inadvertently set this property to some other
value, the custom storage properties are ignored.

Code Generation with Custom Storage Classes

5-17

Code Generation with Custom Storage Classes
The procedure for generating code with data objects that have a custom storage
class is similar to the procedure for code generation using Simulink data
objects that have built-in storage classes. If you are unfamiliar with this
procedure, please see the discussion of Simulink data objects in the “Code
Generation and the Build Process” chapter of the Real-Time Workshop
documentation.

To generate code with custom storage classes, you must

1 Create one or more data objects of class Simulink.CustomParameter or
Simulink.CustomSignal.

2 Set the custom storage class property of the objects, as well as the
class-specific attributes (if any) of the objects.

3 Reference these objects as block parameters, signals, block states, or Data
Store memory.

When generating code from a model employing custom storage classes, make
sure that the Ignore custom storage classes option is not selected, as shown
in this picture. This is the default for the Real-Time Workshop Embedded
Coder.

5 Custom Storage Classes

5-18

When Ignore custom storage classes is selected:

• Objects with custom storage classes are treated as if their storage class
attribute is set to Auto.

• The storage class of signals that have custom storage classes is not displayed
on the signal line, even if the Storage class option of the Simulink Format
menu is selected.

Ignore custom storage classes lets you switch to a rapid prototyping target
such as the generic real-time target (GRT), without having to reconfigure your
parameter and signal objects.

When using the Real-Time Workshop Embedded Coder, you can control the
Ignore custom storage classes option via the check box in the ERT code
generation options (2) category of the Real-Time Workshop tab of the
Simulation Parameters dialog box.

If you are using a target that does not have a check box for this option (such as
a custom target) you can enter the option directly into the System target file
field in the Target configuration category of the Real-Time Workshop pane.
The following example turns the option on:

-aIgnoreCustomStorageClasses=1

Ordering of Generated Storage Declarations
Variables, structs, and other declarations in the generated code are sorted

1 Alphabetically by storage class

2 Within storage class, alphabetically by variable name

See the code excerpts in the next section, “Sample Code Excerpts” for examples
of how declarations are sorted.

Sample Code Excerpts

5-19

Sample Code Excerpts
In the model shown in Figure 5-1, block parameters and signals are associated
with data objects belonging to each of the predefined custom storage classes, as
follows:

• Parameters c, cv, and d reference Simulink.CustomParameter objects with
custom storage class Const, ConstVolatile and Define, respectively.

• Signals v and intl reference Simulink.CustomSignal objects with custom
storage class Volatile and Internal, respectively.

• Signals sw1 and sw2 reference Simulink.CustomSignal objects with custom
storage class Struct, whose StructName storage class attribute is set to
testpoints.

• Signals b1 and b2 reference Simulink.CustomSignal objects with custom
storage class BitField, whose BitFieldName storage class attribute is set to
signalBit.

• Parameter eg references a Simulink.CustomParameter object with custom
storage class ExportToFile, whose FileName storage class attribute is set to
exportedSignals.h.

• Parameter ig references a Simulink.CustomParameter object with custom
storage class ImportFromFile, whose FileName storage class attribute is set
to importedSignals.h, and whose IncludeDelimeter attribute is set to
Braces.

5 Custom Storage Classes

5-20

Figure 5-1: Model Using Custom Storage Classes

The structure definitions for the bit field signalBit and the struct testpoints
are in the generated file model_types.h, as shown in the following code
excerpt. Notice also the inclusion of the generated file exportedSignals.h and
the file importedSignals.h. The latter is assumed to be a hand-written file
containing external signal definitions:

#include "exportedSignals.h"
 #include <importedSignals.h>

 typedef struct signalBit_tag {
 unsigned int b1:1;
 unsigned int b2:1;
 } signalBit_bitfield;

 /* Struct data */
 typedef struct testpoints_tag {
 real_T sw1;
 real_T sw2;
 } testpoints_struct;

Sample Code Excerpts

5-21

A code excerpt from exportedSignals.h follows, declaring the parameter eg
and making it visible to externally written code:

#ifndef _exportedSignals_h
 #include "tmwtypes.h"
 extern real_T eg;
 #define _exportedSignals_h
#endif

The following excerpt from the generated file model_data.c contains the
storage declarations and initializers for the parameters c, cv, and d; signals v
and intl; exported signal eg; signals b1 and b2 (embedded in signalBit); and
sw1 and sw2 (embedded in testpoints):

/* Data with custom storage class Const */
const real_T c = 2.0;

/* Data with custom storage class ConstVolatile */
const volatile real_T cv = 4.0;

/* Data with custom storage class Define */
#define d 5.0

/* Data with custom storage class ExportToFile */
real_T eg;

/* Data with custom storage class Internal */
real_T intl;

/* Data with custom storage class Volatile */
volatile real_T v;

/* External Outputs Structure */
ExternalOutputs rtY;

/* user code (bottom of parameter file) */
signalBit_bitfield signalBit = {0,0};
testpoints_struct testpoints = {0.0,0.0};

5 Custom Storage Classes

5-22

The following code excerpt from model.c illustrates the application of these
variables in the generated program:

 /* Switch: '<Root>/Switch' incorporates:
 * Inport: '<Root>/In1'
 * Constant: '<Root>/Constant'
 * Constant: '<Root>/Constant1'
 */
 if (signalBit.b1) {
 testpoints.sw1 = c;
 } else {
 testpoints.sw1 = cv;
 }

 /* Switch: '<Root>/Switch1' incorporates:
 * Inport: '<Root>/In2'
 * Constant: '<Root>/Constant2'
 * Constant: '<Root>/Constant3'
 */
 if (signalBit.b2) {
 testpoints.sw2 = eg;
 } else {
 testpoints.sw2 = ig;
 }

 /* Sum: '<Root>/Sum' */
 v = testpoints.sw1 + testpoints.sw2;

 /* Gain: '<Root>/Gain'
 *
 * Regarding '<Root>/Gain':
 * Gain value: d
 */
 intl = v * d;

 /* Outport: '<Root>/Out1' */
 rtY.Out1 = intl;

6
Requirements,
Restrictions, Target Files

This section contains the following topics:

Requirements and Restrictions (p. 6-2) Conditions your model must meet for use with the
Real-Time Workshop Embedded Coder.

System Target File and Template
Makefiles (p. 6-4)

Summary of control files used by the Real-Time
Workshop Embedded Coder.

6 Requirements, Restrictions, Target Files

6-2

Requirements and Restrictions
• By definition, a Real-Time Workshop Embedded Coder program operates in

discrete time. Your model must use the following solver options:

- Solver type: fixed-step

- Algorithm: discrete (no continuous states)

• You must select the SingleTasking or Auto solver mode when the model is
single-rate. Table 2-3, Permitted Solver Modes for Real-Time Workshop
Embedded Coder Targeted Models, indicates permitted solver modes for
single-rate and multirate models.

• You cannot have any continuous time blocks in your model (see
“Unsupported Blocks” on page 6-2).

• If you are designing a program that is intended to run indefinitely, you
should not use blocks that have a dependency on absolute time. See “Blocks
that Depend on Absolute Time” in the Real-Time Workshop documentation
for a list of such blocks.

• You must inline all S-functions with a corresponding TLC file. The reason for
this is that Real-Time Workshop Embedded Coder generated code uses the
real-time object, rather than the SimStruct. Since noninlined S-functions
require reference to the SimStruct, they cannot be used in Real-Time
Workshop Embedded Coder generated programs. See the “Writing
S-Functions” section of the Simulink documentation for information about
inlining S-functions.

Unsupported Blocks
The Embedded-C format does not support the following built-in blocks:

• Continuous

- No blocks in this library are supported

• Discrete

- First-Order Hold

• Functions and Tables

- MATLAB Fcn

- The following S-functions: M-file and Fortran S-functions, or noninlined
C-MEX S-functions that call into MATLAB

Requirements and Restrictions

6-3

• Math

- Algebraic Constraint

• Nonlinear

- Rate Limiter

• Sources

- Clock

- Chirp Signal

- Ramp

- Repeating Sequence

- Signal Generator

6 Requirements, Restrictions, Target Files

6-4

System Target File and Template Makefiles
The Real-Time Workshop Embedded Coder system target file is ert.tlc.

Real-Time Workshop provides template makefiles for the Real-Time Workshop
Embedded Coder in the following development environments:

• ert_bc.tmf — Borland C

• ert_lcc.tmf — LCC compiler

• ert_unix.tmf — UNIX host

• ert_vc.tmf — Visual C

• ert_watc.tmf — Watcom C

A

Generating ASAP2 Files

ASAP2 is a data definition standard proposed by the Association for Standardization of Automation
and Measuring Systems (ASAM). ASAP2 is a standard description you use for data measurement,
calibration, and diagnostic systems.

This section includes the following topics:

Overview (p. A-2) Topics you should be familiar with before working with
ASAP2 file generation.

Targets Supporting ASAP2 (p. A-3) Real-Time Workshop targets with built-in ASAP2
support.

Defining ASAP2 Information (p. A-4) Signal and parameter information from a Simulink model
needed to create an ASAP2 file.

Generating an ASAP2 File (p. A-6) Procedure for creating an ASAP2 file from a Simulink
model.

Customizing an ASAP2 File (p. A-10) Target Language Compiler (TLC) files you can change to
customize the ASAP2 file generated from a Simulink
model.

Structure of the ASAP2 File (p. A-17) Summary of the parts of the ASAP2 file and the Target
Language Compiler functions used to write each part.

A Generating ASAP2 Files

A-2

Overview
Real-Time Workshop lets you export an ASAP2 file containing information
about your model during the code generation process.

To make use of ASAP2 file generation, you should become familiar with the
following topics:

• ASAM and the ASAP2 standard and terminology. See the ASAM Web site at
http://www.asam.de.

• Simulink data objects. Data objects are used to supply information not
contained in the model. For an overview, see “Working with Data Objects” in
the Using Simulink documentation.

• Storage and representation of signals and parameters in generated code. See
“Working with Data Structures” in the Real-Time Workshop documentation.

• Signal and parameter objects and their use in code generation. See “Working
with Data Structures” in the Real-Time Workshop documentation.

If you are reading this document online in the MATLAB Help browser, you can
run an interactive demo of ASAP2 file generation.

Alternatively, you can access the demo by typing the following command at the
MATLAB command prompt, as in this example:

asap2demo

Targets Supporting ASAP2

A-3

Targets Supporting ASAP2
Real-Time Workshop provides two target configurations you can use to
generate ASAP2 files. You can select either of these target configurations from
the System Target File Browser:

• The ASAM-ASAP2 Data Definition Target lets you generate only an ASAP2
file, without building an executable.

• The Real-Time Windows Embedded Coder lets you generate an ASAP2 file
as part of the code generation and build process.

Procedures for generating ASAP2 files via these targets are given in
“Generating an ASAP2 File” on page A-6.

Alternatively, you can add ASAP2 support to your own target by defining the
TLC variable GenerateASAP2 in your system target file, as shown in the
following code example:

%assign GenerateASAP2 = 1
%include "codegenentry.tlc"

Note You must define GenerateASAP2 before including codegenentry.tlc.

A Generating ASAP2 Files

A-4

Defining ASAP2 Information
The ASAP2 file generation process requires information about your model's
parameters and signals. Some of this information is contained in the model
itself. The rest must be supplied by using Simulink data objects with the
necessary properties.

Real-Time Workshop provides two example data classes to assist you in
providing the necessary information. The classes are

• ASAP2.Parameter, a subclass of Simulink.Parameter

• ASAP2.Signal, a subclass of Simulink.Signal

This document refers to these as the ASAP2 classes, and to objects instantiated
from these classes as ASAP2 objects. The ASAP2 class creation files are located
in the directory matlabroot/toolbox/rtw/targets/asap2/asap2. To create
ASAP2 objects, make sure that this directory is on the MATLAB path.

As with the built-in Simulink.Parameter and Simulink.Signal classes, we
recommend that you create your own packages and classes rather than using
the ASAP2 classes directly. To do this, copy and rename the directory
matlabroot/toolbox/rtw/targets/asap2/asap2/@ASAP2, and modify the
class creation files it contains. You can extend the ASAP2 classes if additional
properties are required. For general information about extending data object
classes, see “Working with Data Objects” in the Using Simulink
documentation.

The following table contains the minimum set of data attributes required for
ASAP2 file generation. Some data attributes are defined in the model; others
are supplied in the properties of ASAP2 objects. For attributes that are defined
in ASAP2.Parameter or ASAP2.Signal objects, the table gives the associated
property name.

Defining ASAP2 Information

A-5

Memory Address Attribute. The Memory Address attribute, if known before code
generation, can be defined in the data object. Otherwise, a placeholder string
is inserted. You can replace the placeholder with the actual address by
post-processing the generated file. See the file
matlabroot/toolbox/rtw/targets/asap2/asap2/asap2post.m
for an example.

Table A-1: Data Required for ASAP2 File Generation

Data Attribute Defined In Property Name

Data type Model Not applicable

Scaling
(if fixed point data
type)

Model Not applicable

Name (Symbol) Data object Inherited from name of handle to the
data object to which parameter or
signal name resolves

Long identifier
(Description)

Data object LongID_ASAP2

Minimum
allowable value

Data object PhysicalMin_ASAP2

Maximum
allowable value

Data object PhysicalMax_ASAP2

Units Data object Units_ASAP2

Memory Address
(optional)

Data object
(see note
below)

MemoryAddress_ASAP2 (optional; see
“Memory Address Attribute” below)

A Generating ASAP2 Files

A-6

Generating an ASAP2 File
You can generate an ASAP2 file from your model in one of the following ways:

• Use the Real-Time Windows Embedded Coder to generate an ASAP2 file as
part of the code generation and build process.

• Use the ASAM-ASAP2 Data Definition Target to generate only an ASAP2
file, without building an executable.

• Add ASAP2 support to your own target (see “Targets Supporting ASAP2” on
page A-3).

This section discusses how to generate an ASAP2 file via the targets that have
built-in ASAP2 support.

Generating ASAP2 Files via the Real-Time Windows Embedded Coder
The procedure for generating a mode’s data definition in ASAP2 format via the
Real-Time Windows Embedded Coder is as follows:

1 Create the desired model. Use appropriate parameter names and signal
labels to refer to CHARACTERISTICS and MEASUREMENTS respectively.

2 Define the relevant ASAP2.Parameter and ASAP2.Signal objects in the
MATLAB workspace.

3 Configure the data objects to generate unstructured global storage
declarations in the generated code by assigning one of the following storage
classes to the RTWInfo.StorageClass property:

- ExportedGlobal

- ImportedExtern

- ImportedExternPointer

4 Configure the other data object properties such as LongID_ASAP2,
PhysicalMin_ASAP2, etc.

5 In the Advanced pane of the Simulation Parameters dialog box, select the
Inline parameters option.

Note that you should not configure the parameters associated with your data
objects in the Model Parameter Configuration dialog box. If a parameter

Generating an ASAP2 File

A-7

that resolves to a Simulink data object is configured using the Model
Parameter Configuration dialog box, the dialog box configuration is
ignored. You can, however, use the Model Parameter Configuration dialog
to configure other parameters in your model.

6 In the Real-Time Workshop pane, click Browse to open the System Target
File Browser. In the browser, select the Real-Time Windows Embedded
Coder Target.

7 Select ERT code generation options (2) from the Category menu of the
Real-Time Workshop pane. Then select the Generate ASAP2 file option.

8 Click Apply.

9 Click Build (or Generate code).

10 Real-Time Workshop writes the ASAP2 file to the build directory. The
ASAP2 filename is controlled by the ASAP2 setup file. By default, the file is
named model.a2l.

A Generating ASAP2 Files

A-8

Generating ASAP2 Files via the ASAM-ASAP2 Data Definition Target
The procedure for generating a model's data definition in ASAP2 format via the
ASAM-ASAP2 Data Definition Target is as follows:

1 Create the desired model. Use appropriate parameter names and signal
labels to refer to CHARACTERISTICS and MEASUREMENTS respectively.

2 Define the relevant ASAP2.Parameter and ASAP2.Signal objects in the
MATLAB workspace.

3 Configure the data objects to generate unstructured global storage
declarations in the generated code by assigning one of the following storage
classes to the RTWInfo.StorageClass property:

- ExportedGlobal

- ImportedExtern

- ImportedExternPointer

4 Configure the other data object properties such as LongID_ASAP2,
PhysicalMin_ASAP2, etc.

5 In the Advanced pane of the Simulation Parameters dialog box, select the
Inline parameters option.

Note that you should not configure the parameters associated with your data
objects in the Model Parameter Configuration dialog box. If a parameter
that resolves to a Simulink data object is configured using the Model
Parameter Configuration dialog box, the dialog box configuration is
ignored. You can, however, use the Model Parameter Configuration dialog
to configure other parameters in your model.

6 In the Real-Time Workshop pane, click Browse to open the System Target
File Browser. In the browser, select the ASAM-ASAP2 Data Definition
Target.

Generating an ASAP2 File

A-9

7 Select Target configuration from the Category menu of the Real-Time
Workshop pane. Then select the Generate code only option.

This picture shows the correct configuration.

8 Click Apply.

9 Click Generate code.

10 Real-Time Workshop writes the ASAP2 file to the build directory. The
ASAP2 filename is controlled by the ASAP2 setup file. By default, the file is
named model.a2l.

A Generating ASAP2 Files

A-10

Customizing an ASAP2 File
The Real-Time Workshop Embedded Coder provides a number of TLC files to
enable you to customize the ASAP2 file generated from a Simulink model. The
following figure illustrates the hierarchy of ASAP2 related directories and files
within the MATLAB directory.

ASAP2 File Structure on the MATLAB Path
The ASAP2 related files are located within the directories shown above. The
files are organized as follows:

TLC files for

Target

Customizable

ASAP2

Class creation

Customizing an ASAP2 File

A-11

• TLC files for generating ASAP2 files

The matlabroot/rtw/c/tlc directory contains TLC files that generate
ASAP2 files. These files are included by the Real-Time Workshop Embedded
Coder and ASAP2 system target files (ert.tlc and asap2.tlc).

• ASAP2 target files

The matlabroot/toolbox/rtw/targets/asap2/asap2 directory contains the
ASAP2 system target file and other control files.

• ASAP2 class creation files

The matlabroot/toolbox/rtw/targets/asap2/asap2/@ASAP2 directory
contains the M-files that define the ASAP2.Parameter and ASAP2.Signal
classes.

• Customizable TLC files

The matlabroot/toolbox/rtw/targets/asap2/asap2/user directory
contains files that you can modify to customize the content of your ASAP2
files.

• ASAP2 templates

The matlabroot/toolbox/rtw/targets/asap2/asap2/user/templates
directory contains templates that define each type of CHARACTERISTIC in the
ASAP2 file.

Customizing the Contents of the ASAP2 File
The ASAP2 related TLC files enable you to customize the appearance of the
ASAP2 file generated from a Simulink model. Most customization is done by
modifying or adding to the files contained in the
matlabroot/toolbox/rtw/targets/asap2/asap2/user directory.This section
refers to this directory as the asap2/user directory.

The user-customizable files provided are divided into two groups:

• The static files define the parts of the ASAP2 file that are related to the
environment in which the generated code is used. They describe information
specific to the user and/or project. The static files are not model-dependant.

• The dynamic files define the parts of the ASAP2 file that are generated based
on the structure of the source model.

A Generating ASAP2 Files

A-12

The procedure for customizing the ASAP2 file is as follows:

1 Make a copy of the asap2/user directory before making any modifications.

2 Remove the old asap2/user directory from the MATLAB path, or add the
new asap2/user directory to the MATLAB path above the old directory. This
will ensure that MATLAB uses the new ASAP2 setup file, asap2setup.tlc.

asap2setup.tlc specifies which directories and files to include in the TLC
path during the ASAP2 file generation process. Modify asap2setup.tlc to
control the directories and folders included in the TLC path.

3 Modify the static parts of the ASAP2 file. These include

- Project and header symbols, which are specified in asap2setup.tlc

- Static sections of the file, such as file header and tail, A2ML, MOD_COMMON,
etc. These are specified in asap2userlib.tlc.

- Specify the appearance of the dynamic contents of the ASAP2 file by
modifying the existing ASAP2 templates, or by defining new ASAP2
templates. Sections of the ASAP2 file affected include

- RECORD_LAYOUTS: modify appropriate parts of the ASAP2 template
files.

- CHARACTERISTICS: modify appropriate parts of the ASAP2 template
files.

For more information on modifying the appearance of CHARACTERISTICS,
see “ASAP2 Templates” on page A-12.

- MEASUREMENTS: These are specified in asap2userlib.tlc.

- COMPU_METHODS: These are specified in asap2userlib.tlc.

ASAP2 Templates
The appearance of CHARACTERISTICS in the ASAP2 file is controlled using a
different template for each type of CHARACTERISTIC. The asap2/user directory
contains template definition files for scalars, 1-D Lookup Table blocks and 2-D
Lookup Table blocks. You can modify these template definition files, or you can
create additional templates as required.

The procedure for creating a new ASAP2 template is as follows:

1 Define a parameter group. See “Defining Parameter Groups” on page A-13.

Customizing an ASAP2 File

A-13

2 Create a template definition file. See “Creating Template Definition Files”
on page A-14.

3 Include the template definition file in the TLC path. The path is specified in
the ASAP2 setup file, asap2setup.tlc.

Defining Parameter Groups. In some cases you must group multiple parameters
together in the ASAP2 file (for example, the x and y data in a 1-D Lookup
Table block). Parameter groups enable Simulink blocks to define an associative
relationship between some or all of their parameters. The following example
shows the Lookup1D parameter group and describes how to create and use
parameter groups in conjunction with the ASAP2 file generation process.

The BlockInstanceSetup function, within a block's TLC file, creates
parameter groups. There are two built-in TLC functions that facilitate this
process: SLibCreateParameterGroup and SLibAddMember. The following code
fragment creates the Lookup1D parameter group in look_up.tlc. Similar
syntax is used to create parameter groups for the Look-Up Table (2D) block, the
Fixed-Point Blockset Look-Up Table block, and the Look-Up Table (2-D) block:

%if GenerateInterfaceAPI
 %% Create a parameter group for ASAP2 data definition
 %assign group = SLibCreateParameterGroup(block,"Lookup1D")
 %assign tmpVar = SLibAddMember(block,group,InputValues)
 %assign tmpVar = SLibAddMember(block,group,OutputValues)
%endif

A Generating ASAP2 Files

A-14

ParameterGroup records are not written to the model.rtw file, but are included
as part of the relevant Block records in the CompiledModel. The following code
fragment shows the Lookup1D parameter group. The Lookup1D parameter
group has two Member records. The Reference fields of these records refer to the
relevant x and y data records in the GlobalMemoryMap:

Block {
 Type Lookup
 Name "<Root>/Look-Up Table"
 ...
 NumParameterGroups 1
 ParameterGroup {
 Name Lookup1D
 NumMembers 2
 Member {
 NumMembers 0
 Reference ...
 }
 Member {
 NumMembers 0
 Reference ...
 }
 }
}

The Lookup1D parameter group is used by the function
ASAP2UserFcnWriteCharacteristic_Lookup1D, which is defined in the
template definition file, asap2lookup1d.tlc. This function uses the parameter
group to obtain the references to the associated x and y data records in the
GlobalMemoryMap, as shown in the following code fragment.

%function ASAP2UserFcnWriteCharacteristic_Lookup1D(paramGroup) Output

 %assign xParam = paramGroup.Member[0].Reference

 %assign yParam = paramGroup.Member[1].Reference

 ...

%endfunction

Creating Template Definition Files. This section describes the components that make
up an ASAP2 template definition file. This description is in the form of code
examples from asap2lookup1d.tlc, the template definition file for the

Customizing an ASAP2 File

A-15

Lookup1D template. This template corresponds to the Lookup1D parameter
group.

Note When creating a new template, use the corresponding parameter group
name in place of Lookup1D in the code fragments shown.

The following sections describe the components of an ASAP2 template
definition file.

Template Registration Function. The input argument is the name of the parameter
group associated with this template:

%<LibASAP2RegisterTemplate("Lookup1D")>

RECORD_LAYOUT Name Definition Function. Record layout names (aliases) can be
arbitrarily specified for each data type. This function is used by the other
components of this file.

%function ASAP2UserFcnRecordLayoutAlias_Lookup1D(dtId) void
 %switch dtId
 %case tSS_UINT8
 %return "Lookup1D_UBYTE"
 ...
 %endswitch
%endfunction

Function to Write RECORD_LAYOUT Definitions. This function writes out
RECORD_LAYOUT definitions associated with this template. The function is called
by the built-in functions involved in the ASAP2 file generation process. The
function name must be defined as shown, with the appropriate template name
after the underscore:

%function ASAP2UserFcnWriteRecordLayout_Lookup1D() Output
 /begin RECORD_LAYOUT
%<ASAP2UserFcnRecordLayoutAlias_Lookup1D(tSS_UINT8)>
 ...
 /end RECORD_LAYOUT
%endfunction

A Generating ASAP2 Files

A-16

Function to Write the CHARACTERISTIC. This function writes out the
CHARACTERISTIC associated with this template. The function is called by the
built-in functions involved in the ASAP2 file generation process. The function
name must be defined as shown, with the appropriate template name after the
underscore.

The input argument to this function is a pointer to a parameter group record.
The example shown is for a Lookup1D parameter group that has two members.
The references to the associated x and y data records are obtained from the
parameter group record as shown.

This function calls a number of built-in functions to obtain the required
information. For example, LibASAP2GetSymbol returns the symbol (name) for
the specified data record.

%function ASAP2UserFcnWriteCharacteristic_Lookup1D(paramGroup)
Output
 %assign xParam = paramGroup.Member[0].Reference
 %assign yParam = paramGroup.Member[1].Reference
 %assign dtId = LibASAP2GetDataTypeId(xParam)
 /begin CHARACTERISTIC

/* Name */ %<LibASAP2GetSymbol(xParam)>
/* Long identifier */ "%<LibASAP2GetLongID(xParam)>"
...

 /end CHARACTERISTIC
%endfunction

Structure of the ASAP2 File

A-17

Structure of the ASAP2 File
Table A-2 outlines the basic structure of the ASAP2 file and describes which
Target Language Compiler functions and files are used to create each part of
the file:

• Static parts of the ASAP2 file are shown in bold.

• Function calls are indicated by %<FunctionName()>.

A Generating ASAP2 Files

A-18

Table A-2: Sections of ASAP2 File and Related Target Language Compiler Functions and Files

File Section Contents of asap2main.tlc TLC File Containing
Function Definition

File header %<ASAP2UserFcnWriteFileHead()> asap2userlib.tlc

/begin PROJECT "" /begin PROJECT "%<ASAP2ProjectName>" asap2setup.tlc

 /begin HEADER ""
 HEADER contents
 /end HEADER

 /begin HEADER "%<ASAP2HeaderName>"
 %<ASAP2UserFcnWriteHeader()>
 /end HEADER

asap2setup.tlc
asap2userlib.tlc

 /begin MODULE ""
 MODULE contents:
 - A2ML
 - MOD_PAR
 - MOD_COMMON
 ...

 /begin MODULE "%<ASAP2ModuleName>"
 %<ASAP2UserFcnWriteHardwareInterface()>

asap2setup.tlc
asap2userlib.tlc

 Model-dependent
 MODULE contents:
 - RECORD_LAYOUTs
 - CHARACTERISTICS
 - ParameterGroups
 - ModelParameters

 %<SLibASAP2WriteDynamicContents()>
Calls user-defined functions:

 ...WriteRecordLayout_TemplateName()

 ...WriteCharacteristic_TemplateName()
 ...WriteCharacteristic_Scalar()

asap2lib.tlc

user/templates/...

 - MEASUREMENTS
 - ExternalInputs
 - BlockOutputs

 ...WriteMeasurement()

asap2userlib.tlc

 - COMPU_METHODS ...WriteCompuMethod() asap2userlib.tlc

/end MODULE /end MODULE

/end PROJECT /end PROJECT

File footer/tail %<ASAP2UserFcnWriteFileTail()> asap2userlib.tlc

Index-1

Index

A
ASAP2 files

customizing A-10
data attributes required for A-4
generating A-6
structure of A-17
targets supporting A-3

auto-configuring targets
and STF_make_rtw_hook 4-15
purpose of 4-15

B
blocks, unsupported 6-2

C
code generation options

advanced 3-15
Create Simulink (S-Function) block 3-12
External mode 3-18
Generate an example main program 3-19
Generate ASAP2 file 3-17
Generate reusable code 3-19
Ignore custom storage classes 3-17
Initialize floats and doubles to 0.0 3-17
Parameter structure 3-19
Suppress error status in rtM data structure

3-18
Target floating point math environment

3-21
basic 3-3

Initialize external I/O data 3-3
Initialize internal data 3-3
Insert block descriptions in code 3-7
Integer code only 3-4
MAT-file logging 3-4

Single output/update function 2-25, 3-4
Terminate function required 3-4

code generation report 3-10
code modules, generated 2-4
code templates

example of use 4-31
generating code with 4-31
generating main program with 4-36
structure of 4-29
summary of API 4-37

code, user-written 2-7
custom code generation

of file banners 4-24
with code templates 4-28

custom storage classes 5-2
assigning to data 5-11
class-specific attributes 5-8
code generation with 5-17
predefined 5-4
properties of 5-4
sample code 5-19

D
data structures

real-time model 2-2
demos for Real-Time Workshop Embedded Coder

1-4

E
Embedded-C code format 1-2
entry points, model 2-20
ERT code deployment aids 4-4
ERT target

optimized for fixed-point 4-20

Index

Index-2

optimized for floating-point 4-20
ert_main.c 2-23
External mode support 3-18

F
file banners, generation of 4-24
file packaging 2-4

G
generated code

modules 2-4
optimizing 3-2

H
hook files

STF_make_rtw_hook
auto-configuring models with 4-17
customizing build process with 4-10

STF_rtw_info_hook
setting up 4-7
specifying target data sizes with 4-6

HTML code generation report 3-10

I
installation of Real-Time Workshop Embedded

Coder xi
integer-only code 3-4
interrupts, servicing 2-10

M
main program

generation with code templates 4-36
main program (ert_main)

generated 2-7
modifying 2-11
operation of 2-11
static module 2-23
VxWorks example 2-18

math, floating point 3-21
model entry points 2-20

model_initialize 2-21
model_SetEventsForThisBaseStep 2-22
model_step 2-20
model_terminate 2-21

modifying rt_OneStep 2-16

O
optimizing generated code 3-2

P
Parameter data structure

hierarchical 3-19
non-hierarchical 3-19

program execution
main program 2-11
rt_OneStep 2-12

multi-rate multitasking operation 2-14
multi-rate single-tasking operation 2-15
reentrancy 2-15
single-rate single-tasking operation 2-13

R
real-time model data structure 2-2

error status field in 3-18
requirements for Real-Time Workshop Embedded

Coder programs 6-2

Index

Index-3

restrictions on Real-Time Workshop Embedded
Coder programs 6-2

S
S-function wrapper generation 3-12
solver modes, permitted 2-12
source code files, generated 2-4
stack space allocation 3-8
STF_make_rtw_hook function

arguments to 4-10
system target files 6-4

T
task identifier (tid) 2-14, 2-21
template makefiles 6-4
tid 2-14, 2-21
timer interrupts 2-10
typographical conventions (table) xii

U
unsupported blocks 6-2

V
virtualized output port optimization 3-6
VxWorks deployment example 2-18

	Preface
	Prerequisites
	Related Products
	Installing the Real-Time Workshop Embedded Coder
	Typographical Conventions

	Product Overview
	Introduction
	Real-Time Workshop Embedded Coder Demos and Examples
	Demos
	ECRobot Target Example

	Data Structures and Program Execution
	Data Structures and Code Modules
	Real-Time Model Data Structure
	Code Modules
	Generating the Main Program

	Program Execution
	Stand-Alone Program Execution
	Main Program
	rt_OneStep

	VxWorks Example Main Program Execution
	Overview
	Task Management

	Model Entry Points
	The Static Main Program Module

	Code Generation Options and Optimizations
	Controlling and Optimizing the Generated Code
	Basic Code Generation Options
	Virtualized Output Ports Optimization
	Generating Code from Subsystems
	Generating Block Comments
	Controlling Stack Space Allocation

	Generating a Code Generation Report
	Automatic S-Function Wrapper Generation
	Generating an S-Function Wrapper
	Limitations

	Other Code Generation Options
	Create Simulink (S-Function) Block
	Generate ASAP2 File
	Initialize Floats and Doubles to 0.0
	Ignore Custom Storage Classes
	External Mode
	Suppress Error Status in Real-Time Model Data Structure
	Parameter Structure
	Generate An Example Main Program
	Reusable Code Generation Options
	Target Floating Point Math Environment

	Advanced Code Generation Features
	Introduction
	ERT Code Deployment Aids
	Specifying Target-Specific Information for Code Generation
	Setting Up STF_rtw_info_hook.m

	Customizing the Target Build Process via the STF_make_rtw Hook File
	Auto-Configuring Models for Code Generation
	The uset_param and uget_param Utilities
	Automatic Model Configuration Using ert_make_rtw_hook
	Using the Auto-Configuration Utilities

	Generating Efficient Code via Optimized ERT Targets
	Using the Optimized ERT Targets

	Generating Custom Code File Banners
	Custom File Processing Templates
	Template Structure
	Generating Source and Header Files with a CFP Template
	Code Template API Summary

	Custom Storage Classes
	Introduction to Custom Storage Classes
	Properties of Predefined Custom Storage Classes
	Class-Specific Storage Class Attributes
	Other Custom Storage Classes
	GetSet Custom Storage Class for Data Store Memory
	Designing Custom Storage Classes

	Assigning a Custom Storage Class to Data
	Code Generation with Custom Storage Classes
	Ordering of Generated Storage Declarations

	Sample Code Excerpts

	Requirements, Restrictions, Target Files
	Requirements and Restrictions
	Unsupported Blocks

	System Target File and Template Makefiles

	Generating ASAP2 Files
	Overview
	Targets Supporting ASAP2
	Defining ASAP2 Information
	Generating an ASAP2 File
	Customizing an ASAP2 File
	Structure of the ASAP2 File

	Index

